Automated machine learning-based model for the prediction of delirium in patients after surgery for degenerative spinal disease

被引:19
|
作者
Zhang, Yu [1 ,2 ]
Wan, Dong-Hua [3 ]
Chen, Min [3 ]
Li, Yun-Li [3 ]
Ying, Hui [1 ,2 ]
Yao, Ge-Liang [1 ,2 ]
Liu, Zhi-Li [1 ,2 ]
Zhang, Guo-Mei [4 ]
机构
[1] Nanchang Univ, Med Innovat Ctr, Affiliated Hosp 1, Nanchang, Jiangxi, Peoples R China
[2] Nanchang Univ, Inst Spine & Spinal Cord, Nanchang, Jiangxi, Peoples R China
[3] Nanchang Univ, Dept Orthoped, Affiliated Hosp 2, Nanchang, Jiangxi, Peoples R China
[4] Nanchang Univ, Outpatient Dept, Affiliated Hosp 2, Nanchang, Jiangxi, Peoples R China
关键词
delirium; machine learning; model prediction; postoperative; POSTOPERATIVE DELIRIUM; RISK-FACTORS; EPIDEMIOLOGY; DIAGNOSIS; SEVERITY;
D O I
10.1111/cns.14002
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Objective This study used machine learning algorithms to identify critical variables and predict postoperative delirium (POD) in patients with degenerative spinal disease. Methods We included 663 patients who underwent surgery for degenerative spinal disease and received general anesthesia. The LASSO method was used to screen essential features associated with POD. Clinical characteristics, preoperative laboratory parameters, and intraoperative variables were reviewed and were used to construct nine machine learning models including a training set and validation set (80% of participants), and were then evaluated in the rest of the study sample (20% of participants). The area under the receiver-operating characteristic curve (AUROC) and Brier scores were used to compare the prediction performances of different models. The eXtreme Gradient Boosting algorithms (XGBOOST) model was used to predict POD. The SHapley Additive exPlanations (SHAP) package was used to interpret the XGBOOST model. Data of 49 patients were prospectively collected for model validation. Results The XGBOOST model outperformed the other classifier models in the training set (area under the curve [AUC]: 92.8%, 95% confidence interval [CI]: 90.7%-95.0%), validation set (AUC: 87.0%, 95% CI: 80.7%-93.3%). This model also achieved the lowest Brier Score. Twelve vital variables, including age, serum albumin, the admission-to-surgery time interval, C-reactive protein level, hypertension, intraoperative blood loss, intraoperative minimum blood pressure, cardiovascular-cerebrovascular disease, smoking, alcohol consumption, pulmonary disease, and admission-intraoperative maximum blood pressure difference, were selected. The XGBOOST model performed well in the prospective cohort (accuracy: 85.71%). Conclusion A machine learning model and a web predictor for delirium after surgery for the degenerative spinal disease were successfully developed to demonstrate the extent of POD risk during the perioperative period, which could guide appropriate preventive measures for high-risk patients.
引用
收藏
页码:282 / 295
页数:14
相关论文
共 50 条
  • [21] Machine Learning-Based Prognostic Model for Patients After Lung Transplantation
    Tian, Dong
    Yan, Hao-Ji
    Huang, Heng
    Zuo, Yu-Jie
    Liu, Ming-Zhao
    Zhao, Jin
    Wu, Bo
    Shi, Ling-Zhi
    Chen, Jing-Yu
    JAMA NETWORK OPEN, 2023, 6 (05) : E2312022
  • [22] Machine learning-based model for prediction of concrete strength
    Aswal, Vivek Singh
    Singh, B. K.
    Maheshwari, Rohit
    MULTISCALE AND MULTIDISCIPLINARY MODELING EXPERIMENTS AND DESIGN, 2025, 8 (01)
  • [23] Machine learning-based clinical outcome prediction in surgery for acromegaly
    Olivier Zanier
    Matteo Zoli
    Victor E. Staartjes
    Federica Guaraldi
    Sofia Asioli
    Arianna Rustici
    Valentino Marino Picciola
    Ernesto Pasquini
    Marco Faustini-Fustini
    Zoran Erlic
    Luca Regli
    Diego Mazzatenta
    Carlo Serra
    Endocrine, 2022, 75 : 508 - 515
  • [24] Machine learning-based clinical outcome prediction in surgery for acromegaly
    Zanier, Olivier
    Zoli, Matteo
    Staartjes, Victor E.
    Guaraldi, Federica
    Asioli, Sofia
    Rustici, Arianna
    Picciola, Valentino Marino
    Pasquini, Ernesto
    Faustini-Fustini, Marco
    Erlic, Zoran
    Regli, Luca
    Mazzatenta, Diego
    Serra, Carlo
    ENDOCRINE, 2022, 75 (02) : 508 - 515
  • [25] Machine learning-based prediction model for patients with recurrent Staphylococcus aureus bacteremia
    Li, Yuan
    Song, Shuang
    Zhu, Liying
    Zhang, Xiaorun
    Mou, Yijiao
    Lei, Maoxing
    Wang, Wenjing
    Tao, Zhen
    BMC MEDICAL INFORMATICS AND DECISION MAKING, 2025, 25 (01)
  • [26] Automated machine learning-based building energy load prediction method
    Zhang, Chaobo
    Tian, Xiangning
    Zhao, Yang
    Lu, Jie
    JOURNAL OF BUILDING ENGINEERING, 2023, 80
  • [27] Deep Learning-Based Recurrent Delirium Prediction in Critically Ill Patients
    Lucini, Filipe R.
    Stelfox, Henry T.
    Lee, Joon
    CRITICAL CARE MEDICINE, 2023, 51 (04) : 492 - 502
  • [28] Multi-Label Active Learning-Based Machine Learning Model for Heart Disease Prediction
    El-Hasnony, Ibrahim M.
    Elzeki, Omar M.
    Alshehri, Ali
    Salem, Hanaa
    SENSORS, 2022, 22 (03)
  • [29] Deep Learning-Based Prediction Model for Gait Recovery after a Spinal Cord Injury
    Yoo, Hyun-Joon
    Lee, Kwang-Sig
    Koo, Bummo
    Yong, Chan-Woo
    Kim, Chae-Won
    DIAGNOSTICS, 2024, 14 (06)
  • [30] Machine learning-based prediction of new onset of atrial fibrillation after mitral valve surgery
    Adin-Cristian Andrei
    James L. Cox
    Sanjiv Shah
    Sukit Chris Malaisrie
    Christopher Mehta
    Igor R. Efimov
    Andrei Churyla
    Jane Kruse
    Patrick M. McCarthy
    International Journal of Arrhythmia, 25 (1)