Machine learning-based clinical outcome prediction in surgery for acromegaly

被引:0
|
作者
Olivier Zanier
Matteo Zoli
Victor E. Staartjes
Federica Guaraldi
Sofia Asioli
Arianna Rustici
Valentino Marino Picciola
Ernesto Pasquini
Marco Faustini-Fustini
Zoran Erlic
Luca Regli
Diego Mazzatenta
Carlo Serra
机构
[1] University Hospital Zurich,Machine Intelligence in Clinical Neuroscience (MICN) Laboratory, Department of Neurosurgery, Clinical Neuroscience Center
[2] University of Zurich,IRCCS Istituto delle Scienze Neurologiche di Bologna
[3] Programma Neurochirurgia Ipofisi-Pituitary Unit,Department of Biomedical and Neuromotor Sciences (DIBINEM)
[4] University of Bologna,Azienda USL di Bologna
[5] Anatomic Pathology Unit,Department of Experimental, Diagnostic and Specialty Medicine (DIMES)
[6] University of Bologna,University of Bologna
[7] School of Medicine and Surgery,Azienda USL di Bologna
[8] Bellaria Hospital,Department of Endocrinology, Diabetology and Clinical Nutrition
[9] ENT Unit,undefined
[10] University Hospital Zurich (USZ) and University of Zurich (UZH),undefined
来源
Endocrine | 2022年 / 75卷
关键词
Pituitary; Predictive analytics; Outcome prediction; Machine learning; Acromegaly; Neurosurgery;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:508 / 515
页数:7
相关论文
共 50 条
  • [1] Machine learning-based clinical outcome prediction in surgery for acromegaly
    Zanier, Olivier
    Zoli, Matteo
    Staartjes, Victor E.
    Guaraldi, Federica
    Asioli, Sofia
    Rustici, Arianna
    Picciola, Valentino Marino
    Pasquini, Ernesto
    Faustini-Fustini, Marco
    Erlic, Zoran
    Regli, Luca
    Mazzatenta, Diego
    Serra, Carlo
    ENDOCRINE, 2022, 75 (02) : 508 - 515
  • [2] Machine learning-based prediction of anatomical outcome after idiopathic macular hole surgery
    Xiao, Yu
    Hu, Yijun
    Quan, Wuxiu
    Zhang, Bin
    Wu, Yuqing
    Wu, Qiaowei
    Liu, Baoyi
    Zeng, Xiaomin
    Lin, Zhanjie
    Fang, Ying
    Hu, Yu
    Feng, Songfu
    Yuan, Ling
    Cai, Hongmin
    Yu, Honghua
    Li, Tao
    ANNALS OF TRANSLATIONAL MEDICINE, 2021, 9 (10)
  • [3] Machine Learning for Clinical Outcome Prediction
    Shamout, Farah
    Zhu, Tingting
    Clifton, David A.
    IEEE REVIEWS IN BIOMEDICAL ENGINEERING, 2021, 14 : 116 - 126
  • [4] Machine learning-based prediction of transfusion
    Mitterecker, Andreas
    Hofmann, Axel
    Trentino, Kevin M.
    Lloyd, Adam
    Leahy, Michael F.
    Schwarzbauer, Karin
    Tschoellitsch, Thomas
    Boeck, Carl
    Hochreiter, Sepp
    Meier, Jens
    TRANSFUSION, 2020, 60 (09) : 1977 - 1986
  • [5] Clinical evaluation of a machine learning-based dysphagia risk prediction tool
    Gugatschka, Markus
    Egger, Nina Maria
    Haspl, K.
    Hortobagyi, David
    Jauk, Stefanie
    Feiner, Marlies
    Kramer, Diether
    EUROPEAN ARCHIVES OF OTO-RHINO-LARYNGOLOGY, 2024, 281 (08) : 4379 - 4384
  • [6] Accuracy of machine learning-based prediction of medication adherence in clinical research
    Koesmahargyo, Vidya
    Abbas, Anzar
    Zhang, Li
    Guan, Lei
    Feng, Shaolei
    Yadav, Vijay
    Galatzer-Levy, Isaac R.
    PSYCHIATRY RESEARCH, 2020, 294
  • [7] Machine learning-based clinical decision support for infection risk prediction
    Feng, Ting
    Noren, David P.
    Kulkarni, Chaitanya
    Mariani, Sara
    Zhao, Claire
    Ghosh, Erina
    Swearingen, Dennis
    Frassica, Joseph
    McFarlane, Daniel
    Conroy, Bryan
    FRONTIERS IN MEDICINE, 2023, 10
  • [8] Machine Learning-based Prediction Model for Treatment of Acromegaly With First-generation Somatostatin Receptor Ligands
    Wildemberg, Luiz Eduardo
    da Silva Camacho, Aline Helen
    Miranda, Renan Lyra
    Elias, Paula C. L.
    de Castro Musolino, Nina R.
    Nazato, Debora
    Jallad, Raquel
    Huayllas, Martha K. P.
    Mota, Jose Italo S.
    Almeida, Tobias
    Portes, Evandro
    Ribeiro-Oliveira Jr, Antonio
    Vilar, Lucio
    Boguszewski, Cesar Luiz
    Winter Tavares, Ana Beatriz
    Nunes-Nogueira, Vania S.
    Mazzuco, Tania Longo
    Soares Leaes Rech, Carolina Garcia
    Marques, Nelma Veronica
    Chimelli, Leila
    Czepielewski, Mauro
    Bronstein, Marcello D.
    Abucham, Julio
    de Castro, Margaret
    Kasuki, Leandro
    Gadelha, Monica
    JOURNAL OF CLINICAL ENDOCRINOLOGY & METABOLISM, 2021, 106 (07): : 2047 - 2056
  • [9] Machine Learning-Based Prediction of Survival Outcome in Lower Grade Gliomas With Combined Clinical and DNA Methylation Data
    Mladkova, N.
    Giglio, P.
    Salloum, R.
    Fouladi, M.
    Palmer, J. D.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2021, 111 (03): : E115 - E115
  • [10] Machine Learning-Based Radiomics Predicts Radiotherapeutic Response in Patients With Acromegaly
    Fan, Yanghua
    Jiang, Shenzhong
    Hua, Min
    Feng, Shanshan
    Feng, Ming
    Wang, Renzhi
    FRONTIERS IN ENDOCRINOLOGY, 2019, 10