Machine learning-based clinical outcome prediction in surgery for acromegaly

被引:0
|
作者
Olivier Zanier
Matteo Zoli
Victor E. Staartjes
Federica Guaraldi
Sofia Asioli
Arianna Rustici
Valentino Marino Picciola
Ernesto Pasquini
Marco Faustini-Fustini
Zoran Erlic
Luca Regli
Diego Mazzatenta
Carlo Serra
机构
[1] University Hospital Zurich,Machine Intelligence in Clinical Neuroscience (MICN) Laboratory, Department of Neurosurgery, Clinical Neuroscience Center
[2] University of Zurich,IRCCS Istituto delle Scienze Neurologiche di Bologna
[3] Programma Neurochirurgia Ipofisi-Pituitary Unit,Department of Biomedical and Neuromotor Sciences (DIBINEM)
[4] University of Bologna,Azienda USL di Bologna
[5] Anatomic Pathology Unit,Department of Experimental, Diagnostic and Specialty Medicine (DIMES)
[6] University of Bologna,University of Bologna
[7] School of Medicine and Surgery,Azienda USL di Bologna
[8] Bellaria Hospital,Department of Endocrinology, Diabetology and Clinical Nutrition
[9] ENT Unit,undefined
[10] University Hospital Zurich (USZ) and University of Zurich (UZH),undefined
来源
Endocrine | 2022年 / 75卷
关键词
Pituitary; Predictive analytics; Outcome prediction; Machine learning; Acromegaly; Neurosurgery;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:508 / 515
页数:7
相关论文
共 50 条
  • [41] Machine learning-based prediction of FeNi nanoparticle magnetization
    Williamson, Federico
    Naciff, Nadhir
    Catania, Carlos
    dos Santos, Gonzalo
    Amigo, Nicolas
    Bringa, Eduardo M.
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2024, 33 : 5263 - 5276
  • [42] Machine Learning-Based Prediction of the Excitation Wavelength of Phosphors
    Sahu, Sunil K.
    Shrivastav, Anil
    Swamy, N. K.
    Dubey, Vikas
    Halwar, D. K.
    Kumar, M. Tanooj
    Rao, M. C.
    JOURNAL OF APPLIED SPECTROSCOPY, 2024, 91 (03) : 669 - 677
  • [43] Interpretability of machine learning-based prediction models in healthcare
    Stiglic, Gregor
    Kocbek, Primoz
    Fijacko, Nino
    Zitnik, Marinka
    Verbert, Katrien
    Cilar, Leona
    WILEY INTERDISCIPLINARY REVIEWS-DATA MINING AND KNOWLEDGE DISCOVERY, 2020, 10 (05)
  • [44] Machine Learning-Based Prediction of Antiferromagnetic Skyrmion Formation
    Saini, Shipra
    Shukla, Alok Kumar
    Nehete, Hemkant
    Bindal, Namita
    Kaushik, Brajesh Kumar
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2024, 71 (04) : 2774 - 2780
  • [45] Machine learning-based prediction models for postpartum hemorrhage
    Venkatesh, Kartik K.
    Strauss, Robert
    Grotegut, Chad
    Heine, Phillips
    Stamilio, David M.
    Menard, Kathryn
    Jelovsek, Eric
    AMERICAN JOURNAL OF OBSTETRICS AND GYNECOLOGY, 2020, 222 (01) : S175 - S176
  • [46] Machine Learning-Based Prediction of the Martensite Start Temperature
    Wentzien, Marcel
    Koch, Marcel
    Friedrich, Thomas
    Ingber, Jerome
    Kempka, Henning
    Schmalzried, Dirk
    Kunert, Maik
    STEEL RESEARCH INTERNATIONAL, 2024, 95 (10)
  • [47] Machine Learning-based RSSI Prediction in Factory Environments
    Webber, Julian
    Suga, Norisato
    Ano, Susumu
    Jou, Yafei
    Mehbodniya, Abolfazl
    Higashimori, Toshihide
    Yano, Kazuto
    Suzuki, Yoshinori
    PROCEEDINGS OF 2019 25TH ASIA-PACIFIC CONFERENCE ON COMMUNICATIONS (APCC), 2019, : 195 - 200
  • [48] Machine learning-based approaches for disease gene prediction
    Duc-Hau Le
    BRIEFINGS IN FUNCTIONAL GENOMICS, 2020, 19 (5-6) : 350 - 363
  • [49] Machine Learning-based Seismic Prediction of Building Structures
    Liu, Shuai
    Peng, Hailiang
    Deng, Xiaolu
    PROCEEDINGS OF 2024 INTERNATIONAL CONFERENCE ON MACHINE INTELLIGENCE AND DIGITAL APPLICATIONS, MIDA2024, 2024, : 256 - 261
  • [50] Machine learning-based seawater concentration pathway prediction
    Hu, Fang
    Xu, Xingyong
    Liang, Jun
    Yang, Changguo
    Huang, Mingfang
    Su, Qiao
    COMPUTERS & ELECTRICAL ENGINEERING, 2021, 94