Dilated Spectral-Spatial Gaussian Transformer Net for Hyperspectral Image Classification

被引:1
|
作者
Zhang, Zhenbei [1 ]
Wang, Shuo [2 ]
Zhang, Weilin [1 ]
机构
[1] Chinese Acad Sci, Inst Tibetan Plateau Res, State Key Lab Tibetan Plateau Earth Syst, Resources & Environm TPESRE, Beijing 100101, Peoples R China
[2] Chinese Acad Surveying & Mapping, Beijing 100036, Peoples R China
基金
中国国家自然科学基金;
关键词
deep learning; Dilated Spectral-Spatial Gaussian Transformer Net (DSSGT); HSI classification;
D O I
10.3390/rs16020287
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In recent years, deep learning-based classification methods for hyperspectral images (HSIs) have gained widespread popularity in fields such as agriculture, environmental monitoring, and geological exploration. This is owing to their ability to automatically extract features and deliver outstanding performance. This study provides a new Dilated Spectral-Spatial Gaussian Transformer Net (DSSGT) model. The DSSGT model incorporates dilated convolutions as shallow feature extraction units, which allows for an expanded receptive field while maintaining computational efficiency. We integrated transformer architecture to effectively capture feature relationships and generate deep fusion features, thereby enhancing classification accuracy. We used consecutive dilated convolutional layers to extract joint low-level spectral-spatial features. We then introduced Gaussian Weighted Pixel Embedding blocks, which leverage Gaussian weight matrices to transform the joint features into pixel-level vectors. By combining the features of each pixel with its neighbouring pixels, we obtained pixel-level representations that are more expressive and context-aware. The transformed vector matrix was fed into the transformer encoder module, enabling the capture of global dependencies within the input data and generating higher-level fusion features with improved expressiveness and discriminability. We evaluated the proposed DSSGT model using five hyperspectral image datasets through comparative experiments. Our results demonstrate the superior performance of our approach compared to those of current state-of-the-art methods, providing compelling evidence of the DSSGT model's effectiveness.
引用
收藏
页数:23
相关论文
共 50 条
  • [11] Hierarchical Unified Spectral-Spatial Aggregated Transformer for Hyperspectral Image Classification
    Zhou, Weilian
    Kamata, Sei-Ichiro
    Luo, Zhengbo
    Chen, Xiaoyue
    2022 26TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2022, : 3041 - 3047
  • [12] Spectral-Spatial Attention Transformer with Dense Connection for Hyperspectral Image Classification
    Dang, Lanxue
    Weng, Libo
    Dong, Weichuan
    Li, Shenshen
    Hou, Yane
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2022, 2022
  • [13] Spectral-Spatial Transformer for Hyperspectral Image Sharpening
    Chen, Lihui
    Vivone, Gemine
    Qin, Jiayi
    Chanussot, Jocelyn
    Yang, Xiaomin
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 35 (11) : 1 - 15
  • [14] MSTNet: A Multilevel Spectral-Spatial Transformer Network for Hyperspectral Image Classification
    Yu, Haoyang
    Xu, Zhen
    Zheng, Ke
    Hong, Danfeng
    Yang, Hao
    Song, Meiping
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [15] Foundation Model-Based Spectral-Spatial Transformer for Hyperspectral Image Classification
    Huang, Lingbo
    Chen, Yushi
    He, Xin
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [16] LESSFormer: Local-Enhanced Spectral-Spatial Transformer for Hyperspectral Image Classification
    Zou, Jiaqi
    He, Wei
    Zhang, Hongyan
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [17] Spectral-Spatial Center-Aware Bottleneck Transformer for Hyperspectral Image Classification
    Zhang, Meng
    Yang, Yi
    Zhang, Sixian
    Mi, Pengbo
    Han, Deqiang
    REMOTE SENSING, 2024, 16 (12)
  • [18] A Light-Weighted Spectral-Spatial Transformer Model for Hyperspectral Image Classification
    Arshad, Tahir
    Zhang, Junping
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 12008 - 12019
  • [19] Spectral-Spatial Masked Transformer With Supervised and Contrastive Learning for Hyperspectral Image Classification
    Huang, Lingbo
    Chen, Yushi
    He, Xin
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [20] Spectral-Spatial Response for Hyperspectral Image Classification
    Wei, Yantao
    Zhou, Yicong
    Li, Hong
    REMOTE SENSING, 2017, 9 (03):