A Light-Weighted Spectral-Spatial Transformer Model for Hyperspectral Image Classification

被引:4
|
作者
Arshad, Tahir [1 ]
Zhang, Junping [1 ]
机构
[1] Harbin Inst Technol, Sch Elect & Informat Engn, Harbin 150001, Peoples R China
基金
中国国家自然科学基金;
关键词
Convolutional neural network (CNN); hyperspectral image (HSI) classification; lightweight multihead self-attention; vision transformers (ViTs); NETWORKS;
D O I
10.1109/JSTARS.2024.3419070
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Classifying hyperspectral images in remote sensing applications is challenging due to limited training samples and high dimensionality of data. Deep-learning-based methods have recently demonstrated promising results in the classification of HSI. This article presents a proposed methodology for extracting local features and high-level semantic features from HSI input data using a light-weighted spectral-spatial transformer. This approach will allow us to comprehensively examine the spatial and spectral characteristics while reducing the computing expenses. The proposed model integrates lightweight multihead self-attention and residual feedforward modules in order to effectively capture long-range dependencies and address the computational challenges associated with this model. In order to assess the efficiency of the proposed model, we conducted experiments on four publicly available datasets. The obtained experimental results were then compared with those of the existing state-of-the-art models. The proposed model obtains the best classification results in terms of classification accuracy and computational complexity under limited training samples. The overall accuracy of the proposed model achieved 99.91, 98.06, 99.43 and 99.01 on four datasets.
引用
收藏
页码:12008 / 12019
页数:12
相关论文
共 50 条
  • [1] Interactive Spectral-Spatial Transformer for Hyperspectral Image Classification
    Song, Liangliang
    Feng, Zhixi
    Yang, Shuyuan
    Zhang, Xinyu
    Jiao, Licheng
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (09) : 8589 - 8601
  • [2] LIGHT-WEIGHTED EXPLAINABLE DUAL TRANSFORMER NETWORK FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    Xu, Linlin
    Fang, Yuan
    Chen, Xinwei
    Clausi, David A.
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 5942 - 5945
  • [3] Foundation Model-Based Spectral-Spatial Transformer for Hyperspectral Image Classification
    Huang, Lingbo
    Chen, Yushi
    He, Xin
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [4] Spectral-Spatial Morphological Attention Transformer for Hyperspectral Image Classification
    Roy, Swalpa Kumar
    Deria, Ankur
    Shah, Chiranjibi
    Haut, Juan M.
    Du, Qian
    Plaza, Antonio
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [5] Spectral-Spatial Morphological Attention Transformer for Hyperspectral Image Classification
    Roy, Swalpa Kumar
    Deria, Ankur
    Shah, Chiranjibi
    Haut, Juan M.
    Du, Qian
    Plaza, Antonio
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [6] A Spectral-Spatial Fusion Transformer Network for Hyperspectral Image Classification
    Liao, Diling
    Shi, Cuiping
    Wang, Liguo
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [7] MultiScale spectral-spatial convolutional transformer for hyperspectral image classification
    Gong, Zhiqiang
    Zhou, Xian
    Yao, Wen
    IET IMAGE PROCESSING, 2024, 18 (13) : 4328 - 4340
  • [8] WaveFormer: Spectral-Spatial Wavelet Transformer for Hyperspectral Image Classification
    Ahmad, Muhammad
    Ghous, Usman
    Usama, Muhammad
    Mazzara, Manuel
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2024, 21 : 1 - 5
  • [9] A multi-range spectral-spatial transformer for hyperspectral image classification
    Zhang, Lan
    Wang, Yang
    Yang, Linzi
    Chen, Jianfeng
    Liu, Zijie
    Wang, Jihong
    Bian, Lifeng
    Yang, Chen
    INFRARED PHYSICS & TECHNOLOGY, 2023, 135
  • [10] SSATNet: Spectral-spatial attention transformer for hyperspectral corn image classification
    Wang, Bin
    Chen, Gongchao
    Wen, Juan
    Li, Linfang
    Jin, Songlin
    Li, Yan
    Zhou, Ling
    Zhang, Weidong
    FRONTIERS IN PLANT SCIENCE, 2025, 15