Hyperspectral image dynamic range reconstruction using deep neural network-based denoising methods

被引:0
|
作者
Cheplanov, Loran [1 ,2 ]
Avidan, Shai [1 ]
Bonfil, David J. [3 ]
Klapp, Iftach [2 ]
机构
[1] Tel Aviv Univ, Sch Elect Engn, IL-69978 Tel Aviv, Israel
[2] Agr Res Org, Volcani Inst, Dept Sensing Informat & Mechanizat Engn, IL-7505101 Rishon Leziyyon, Israel
[3] Agr Res Org, Dept Vegetables & Field Crops, Gilat Res Ctr, IL-8531100 Negev, Israel
关键词
Deep neural network; Dynamic-range reconstruction; Shortening shooting time; Hyperspectral; Image denoising; Kullback-Leibler divergence loss;
D O I
10.1007/s00138-024-01523-5
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Hyperspectral (HS) measurement is among the most useful tools in agriculture for early disease detection. However, the cost of HS cameras that can perform the desired detection tasks is prohibitive-typically fifty thousand to hundreds of thousands of dollars. In a previous study at the Agricultural Research Organization's Volcani Institute (Israel), a low-cost, high-performing HS system was developed which included a point spectrometer and optical components. Its main disadvantage was long shooting time for each image. Shooting time strongly depends on the predetermined integration time of the point spectrometer. While essential for performing monitoring tasks in a reasonable time, shortening integration time from a typical value in the range of 200 ms to the 10 ms range results in deterioration of the dynamic range of the captured scene. In this work, we suggest correcting this by learning the transformation from data measured with short integration time to that measured with long integration time. Reduction of the dynamic range and consequent low SNR were successfully overcome using three developed deep neural networks models based on a denoising auto-encoder, DnCNN and LambdaNetworks architectures as a backbone. The best model was based on DnCNN using a combined loss function of l2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _{2}$$\end{document} and Kullback-Leibler divergence on images with 20 consecutive channels. The full spectrum of the model achieved a mean PSNR of 30.61 and mean SSIM of 0.9, showing total improvement relatively to the 10 ms measurements' mean PSNR and mean SSIM values by 60.43% and 94.51%, respectively.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] ADRN: ATTENTION-BASED DEEP RESIDUAL NETWORK FOR HYPERSPECTRAL IMAGE DENOISING
    Zhao, Yongsen
    Zhai, Deming
    Jiang, Junjun
    Liu, Xianming
    2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 2668 - 2672
  • [32] DEEP NEURAL NETWORK-BASED DATA RECONSTRUCTION FOR LANDSLIDE DETECTION
    Utomo, Darmawan
    Hu, Liang-Cheng
    Hsiung, Pao-Ann
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 3119 - 3122
  • [33] Neural network-based image reconstruction for positron emission tomography
    Mondal, PP
    Rajan, K
    APPLIED OPTICS, 2005, 44 (30) : 6345 - 6352
  • [34] A Patch Based Denoising Method Using Deep Convolutional Neural Network for Seismic Image
    Zhang, Yushu
    Lin, Hongbo
    Li, Yue
    Ma, Haitao
    IEEE ACCESS, 2019, 7 : 156883 - 156894
  • [35] Evolving Deep Convolutional Neural Networks for Hyperspectral Image Denoising
    Liu, Yuqiao
    Sun, Yanan
    Xue, Bing
    Zhang, Mengjie
    2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,
  • [36] IMAGE RECONSTRUCTION USING DEEP CONVOLUTIONAL NEURAL NETWORK
    Shireesha, Muthineni
    Yadav, Gargi
    Chandra, Saroj Kumar
    Bajpai, Manish Kumar
    2020 INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND SIGNAL PROCESSING (AISP), 2020,
  • [37] Signal Reconstruction Deep Residual Neural Network-Based Bandwidth Augmented Methods for DPD Linearization
    Wang, Jiacheng
    Su, Rina
    Lv, Junshi
    Xu, Gaoming
    Liu, Taijun
    IEEE MICROWAVE AND WIRELESS TECHNOLOGY LETTERS, 2023, 33 (03): : 243 - 246
  • [38] Quantitative evaluation of deep convolutional neural network-based image denoising for low-dose computed tomography
    Keisuke Usui
    Koichi Ogawa
    Masami Goto
    Yasuaki Sakano
    Shinsuke Kyougoku
    Hiroyuki Daida
    Visual Computing for Industry, Biomedicine, and Art, 4
  • [39] Quantitative evaluation of deep convolutional neural network-based image denoising for low-dose computed tomography
    Usui, Keisuke
    Ogawa, Koichi
    Goto, Masami
    Sakano, Yasuaki
    Kyougoku, Shinsuke
    Daida, Hiroyuki
    VISUAL COMPUTING FOR INDUSTRY BIOMEDICINE AND ART, 2021, 4 (01)
  • [40] Deep neural network-based image copyright protection scheme
    Lu, Haoyu
    Gong, Daofu
    Liu, Fenlin
    Wang, Ping
    Kang, Yuhan
    JOURNAL OF ELECTRONIC IMAGING, 2019, 28 (02)