Hyperspectral image dynamic range reconstruction using deep neural network-based denoising methods

被引:0
|
作者
Cheplanov, Loran [1 ,2 ]
Avidan, Shai [1 ]
Bonfil, David J. [3 ]
Klapp, Iftach [2 ]
机构
[1] Tel Aviv Univ, Sch Elect Engn, IL-69978 Tel Aviv, Israel
[2] Agr Res Org, Volcani Inst, Dept Sensing Informat & Mechanizat Engn, IL-7505101 Rishon Leziyyon, Israel
[3] Agr Res Org, Dept Vegetables & Field Crops, Gilat Res Ctr, IL-8531100 Negev, Israel
关键词
Deep neural network; Dynamic-range reconstruction; Shortening shooting time; Hyperspectral; Image denoising; Kullback-Leibler divergence loss;
D O I
10.1007/s00138-024-01523-5
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Hyperspectral (HS) measurement is among the most useful tools in agriculture for early disease detection. However, the cost of HS cameras that can perform the desired detection tasks is prohibitive-typically fifty thousand to hundreds of thousands of dollars. In a previous study at the Agricultural Research Organization's Volcani Institute (Israel), a low-cost, high-performing HS system was developed which included a point spectrometer and optical components. Its main disadvantage was long shooting time for each image. Shooting time strongly depends on the predetermined integration time of the point spectrometer. While essential for performing monitoring tasks in a reasonable time, shortening integration time from a typical value in the range of 200 ms to the 10 ms range results in deterioration of the dynamic range of the captured scene. In this work, we suggest correcting this by learning the transformation from data measured with short integration time to that measured with long integration time. Reduction of the dynamic range and consequent low SNR were successfully overcome using three developed deep neural networks models based on a denoising auto-encoder, DnCNN and LambdaNetworks architectures as a backbone. The best model was based on DnCNN using a combined loss function of l2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _{2}$$\end{document} and Kullback-Leibler divergence on images with 20 consecutive channels. The full spectrum of the model achieved a mean PSNR of 30.61 and mean SSIM of 0.9, showing total improvement relatively to the 10 ms measurements' mean PSNR and mean SSIM values by 60.43% and 94.51%, respectively.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Image Denoising using Deep Learning: Convolutional Neural Network
    Ghose, Shreyasi
    Singh, Nishi
    Singh, Prabhishek
    PROCEEDINGS OF THE CONFLUENCE 2020: 10TH INTERNATIONAL CONFERENCE ON CLOUD COMPUTING, DATA SCIENCE & ENGINEERING, 2020, : 511 - 517
  • [22] Low-rank tensor embedded deep neural network for hyperspectral image denoising
    Tu K.
    Xiong F.
    Hou X.
    National Remote Sensing Bulletin, 2024, 28 (01) : 121 - 131
  • [23] Image denoising method based on a deep convolution neural network
    Zhang, Fu
    Cai, Nian
    Wu, Jixiu
    Cen, Guandong
    Wang, Han
    Chen, Xindu
    IET IMAGE PROCESSING, 2018, 12 (04) : 485 - 493
  • [24] Methods for image denoising using convolutional neural network: a review
    Ademola E. Ilesanmi
    Taiwo O. Ilesanmi
    Complex & Intelligent Systems, 2021, 7 : 2179 - 2198
  • [25] Methods for image denoising using convolutional neural network: a review
    Ilesanmi, Ademola E.
    Ilesanmi, Taiwo O.
    COMPLEX & INTELLIGENT SYSTEMS, 2021, 7 (05) : 2179 - 2198
  • [26] Effect of denoising on hyperspectral image classification using deep networks and kernel methods
    Jacob, Naveen Varghese
    Sowmya, V
    Soman, K. P.
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2019, 36 (03) : 2067 - 2073
  • [27] Dynamic PET Image Denoising Using Deep Convolutional Neural Network Without Training Datasets
    Hashimoto, Fumio
    Ote, Kibo
    Tsukada, Hideo
    JOURNAL OF NUCLEAR MEDICINE, 2019, 60
  • [28] Advances in deep neural network-based hyperspectral image classification and feature learning with limited samples: a survey
    Ullah, Farhan
    Ullah, Irfan
    Khan, Khalil
    Khan, Salabat
    Amin, Farhan
    APPLIED INTELLIGENCE, 2025, 55 (06)
  • [29] Adrn: Attention-based deep residual network for hyperspectral image denoising
    Zhao, Yongsen
    Zhai, Deming
    Jiang, Junjun
    Liu, Xianming
    ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings, 2020, 2020-May : 2668 - 2672
  • [30] Advances in deep neural network-based hyperspectral image classification and feature learning with limited samples: a surveyAdvances in deep neural network-based hyperspectral image classification and feature learning with limited samples: a surveyF. Ullah et al.
    Farhan Ullah
    Irfan Ullah
    Khalil Khan
    Salabat Khan
    Farhan Amin
    Applied Intelligence, 2025, 55 (6)