Optimal Design of Control-Lyapunov Functions by Semi-Infinite Stochastic Programming

被引:0
|
作者
Tang, Wentao [1 ]
Daoutidis, Prodromos [2 ,3 ]
机构
[1] North Carolina State Univ, Dept Chem & Biomol Engn, Raleigh, NC 27695 USA
[2] Univ Minnesota, Coll Sci & Engn, Minneapolis, MN 55455 USA
[3] Univ Minnesota, Dept Chem Engn & Mat Sci, Minneapolis, MN 55455 USA
关键词
MODEL-PREDICTIVE CONTROL; STABILIZATION; STABILITY; STATE; FLEXIBILITY; SYSTEMS;
D O I
10.1109/CDC49753.2023.1038499
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Lyapunov-based control is a common method to enforce closed-loop stability of nonlinear systems, where the choice of a control-Lyapunov function has a strong impact on the resulting performance. In this paper, we propose a generic semi-infinite stochastic programming formulation for the optimal control-Lyapunov function design problem and discuss its various specializations. Specifically, the expected performance evaluated on simulated trajectories under different scenarios is optimized subject to infinite constraints on stability and performance specifications. A stochastic proximal primal-dual algorithm is introduced to find a stationary solution of such a semi-infinite stochastic programming problem. The proposed method is illustrated by a chemical reactor case study.
引用
收藏
页码:7277 / 7284
页数:8
相关论文
共 50 条
  • [41] Dynamic constrained optimal power flow using semi-infinite programming
    Xia, Yan
    Chan, Ka Wing
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2006, 21 (03) : 1455 - 1457
  • [42] On differential properties of approximate optimal solutions in parametric semi-infinite programming
    Levitin, ES
    RECENT ADVANCES IN OPTIMIZATION, 1997, 452 : 168 - 182
  • [43] ON NONDIFFERENTIABLE SEMI-INFINITE MULTIOBJECTIVE PROGRAMMING WITH INTERVAL-VALUED FUNCTIONS
    Antczak, T. A. D. E. U. S. Z.
    Farajzadeh, A. L., I
    JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2023, 19 (08) : 5816 - 5841
  • [44] SEMI-INFINITE PROGRAMMING AND CONTINUUM PHYSICS
    KORTANEK, KO
    LECTURE NOTES IN ECONOMICS AND MATHEMATICAL SYSTEMS, 1985, 259 : 65 - 78
  • [45] Generalized semi-infinite programming:: A tutorial
    Guerra Vazquez, F.
    Ruckmann, J.-J.
    Stein, O.
    Still, G.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2008, 217 (02) : 394 - 419
  • [46] Augmented Lagrangians in semi-infinite programming
    Jan-J. Rückmann
    Alexander Shapiro
    Mathematical Programming, 2009, 116 : 499 - 512
  • [47] A parallel algorithm for semi-infinite programming
    Zakovic, S
    Rustem, B
    Asprey, SP
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2003, 44 (1-2) : 377 - 390
  • [48] Augmented Lagrangians in semi-infinite programming
    Ruckmann, Jan-J.
    Shapiro, Alexander
    MATHEMATICAL PROGRAMMING, 2009, 116 (1-2) : 499 - 512
  • [49] A PURIFICATION ALGORITHM FOR SEMI-INFINITE PROGRAMMING
    LEON, T
    VERCHER, E
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 1992, 57 (03) : 412 - 420
  • [50] Parametric linear semi-infinite programming
    Dept. of Indust. and Operations Eng., University of Michigan, Ann Arbor, MI 48109, United States
    不详
    不详
    Appl Math Lett, 3 (89-96):