Optimal Design of Control-Lyapunov Functions by Semi-Infinite Stochastic Programming

被引:0
|
作者
Tang, Wentao [1 ]
Daoutidis, Prodromos [2 ,3 ]
机构
[1] North Carolina State Univ, Dept Chem & Biomol Engn, Raleigh, NC 27695 USA
[2] Univ Minnesota, Coll Sci & Engn, Minneapolis, MN 55455 USA
[3] Univ Minnesota, Dept Chem Engn & Mat Sci, Minneapolis, MN 55455 USA
关键词
MODEL-PREDICTIVE CONTROL; STABILIZATION; STABILITY; STATE; FLEXIBILITY; SYSTEMS;
D O I
10.1109/CDC49753.2023.1038499
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Lyapunov-based control is a common method to enforce closed-loop stability of nonlinear systems, where the choice of a control-Lyapunov function has a strong impact on the resulting performance. In this paper, we propose a generic semi-infinite stochastic programming formulation for the optimal control-Lyapunov function design problem and discuss its various specializations. Specifically, the expected performance evaluated on simulated trajectories under different scenarios is optimized subject to infinite constraints on stability and performance specifications. A stochastic proximal primal-dual algorithm is introduced to find a stationary solution of such a semi-infinite stochastic programming problem. The proposed method is illustrated by a chemical reactor case study.
引用
收藏
页码:7277 / 7284
页数:8
相关论文
共 50 条