Optimal Design of Control-Lyapunov Functions by Semi-Infinite Stochastic Programming

被引:0
|
作者
Tang, Wentao [1 ]
Daoutidis, Prodromos [2 ,3 ]
机构
[1] North Carolina State Univ, Dept Chem & Biomol Engn, Raleigh, NC 27695 USA
[2] Univ Minnesota, Coll Sci & Engn, Minneapolis, MN 55455 USA
[3] Univ Minnesota, Dept Chem Engn & Mat Sci, Minneapolis, MN 55455 USA
关键词
MODEL-PREDICTIVE CONTROL; STABILIZATION; STABILITY; STATE; FLEXIBILITY; SYSTEMS;
D O I
10.1109/CDC49753.2023.1038499
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Lyapunov-based control is a common method to enforce closed-loop stability of nonlinear systems, where the choice of a control-Lyapunov function has a strong impact on the resulting performance. In this paper, we propose a generic semi-infinite stochastic programming formulation for the optimal control-Lyapunov function design problem and discuss its various specializations. Specifically, the expected performance evaluated on simulated trajectories under different scenarios is optimized subject to infinite constraints on stability and performance specifications. A stochastic proximal primal-dual algorithm is introduced to find a stationary solution of such a semi-infinite stochastic programming problem. The proposed method is illustrated by a chemical reactor case study.
引用
收藏
页码:7277 / 7284
页数:8
相关论文
共 50 条
  • [1] On merging constraint and optimal control-Lyapunov functions
    Blanchini, Franco
    Fabiani, Filippo
    Grammatico, Sergio
    2018 IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2018, : 2328 - 2333
  • [2] A Bilevel Programming Approach to the Convergence Analysis of Control-Lyapunov Functions
    Tang, Wentao
    Daoutidis, Prodromos
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2019, 64 (10) : 4174 - 4179
  • [3] SUBDIFFERENTIALS OF MARGINAL FUNCTIONS IN SEMI-INFINITE PROGRAMMING
    Thai Doan Chuong
    Nguyen Quang Huy
    Yao, Jen-Chih
    SIAM JOURNAL ON OPTIMIZATION, 2009, 20 (03) : 1462 - 1477
  • [4] OPTIMAL VALUE FUNCTION IN SEMI-INFINITE PROGRAMMING
    GOBERNA, MA
    LOPEZ, MA
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1988, 59 (02) : 261 - 279
  • [5] Optimal design of nonuniform FIR transmultiplexer using semi-infinite programming
    Ho, CYF
    Ling, BWK
    Liu, YQ
    Tam, PKS
    Teo, KL
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2005, 53 (07) : 2598 - 2603
  • [6] Weak converse Lyapunov theorems and control-Lyapunov functions
    Kellett, CM
    Teel, AR
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2004, 42 (06) : 1934 - 1959
  • [7] Semi-infinite programming
    Lopez, Marco
    Still, Georg
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2007, 180 (02) : 491 - 518
  • [8] Air pollution control with semi-infinite programming
    Vaz, A. Ismael F.
    Ferreira, Eugenio C.
    APPLIED MATHEMATICAL MODELLING, 2009, 33 (04) : 1957 - 1969
  • [9] LOWER BOUNDED CONTROL-LYAPUNOV FUNCTIONS
    Hirschorn, Ronald
    COMMUNICATIONS IN INFORMATION AND SYSTEMS, 2008, 8 (04) : 399 - 412
  • [10] Optimal design of IIR filters using linear semi-infinite programming method
    Yamazaki, Takayuki
    Suyama, Kenji
    IEEJ Transactions on Electronics, Information and Systems, 2009, 129 (01) : 53 - 58