Transversal Hop Domination in Graphs

被引:2
|
作者
Bonsocan, Maria Andrea O. [1 ]
Jamil, Ferdinand P. [2 ]
机构
[1] Mindanao State Univ, Iligan Inst Technol, Coll Sci & Math, Dept Math & Stat, Iligan 9200, Philippines
[2] Mindanao State Univ, Premier Res Inst Sci & Math, Iligan Inst Technol, Coll Sci & Math,Dept Math & Stat,Ctr Graph Theory, Iligan 9200, Philippines
来源
关键词
Key Words and Phrases; Hop dominating set; transversal hop dominating set; transversal hop domination number; SETS; CORONA; JOIN;
D O I
10.29020/nybg.ejpam.v16i1.4610
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a graph. A set S C V (G) is a hop dominating set of G if for every v E V (G)\S, there exists u E S such that dG(u, v) = 2. The minimum cardinality gamma h(G) of a hop dominating set is the hop domination number of G. Any hop dominating set of G of cardinality gamma h(G) is a gamma h-set of G. A hop dominating set S of G which intersects every gamma h-set of G is a transversal hop dominating set. The minimum cardinality gamma bh(G) of a transversal hop dominating set in G is the transversal hop domination number of G. In this paper, we initiate the study of transversal hop domination. First, we characterize graphs G whose values for gamma bh(G) are either n or n - 1, and we determine the specific values of gamma bh(G) for some specific graphs. Next, we show that for every positive integers a and b with a > 2 and b > 3a, there exists a connected graph G on b vertices such that gamma bh(G) = a. We also show that for every positive integers a and b with 2 < a < b, there exists a connected graph G for which gamma h(G) = a and gamma bh(G) = b. Finally, we investigate the transversal hop dominating sets in the join and corona of two graphs, and determine their corresponding transversal hop domination numbers.
引用
收藏
页码:192 / 206
页数:15
相关论文
共 50 条
  • [21] On Minimal Geodetic Hop Domination In Graphs
    Catian, Dyjay
    Aniversario, Imelda S.
    Jamil, Ferdinand P.
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2024, 17 (03): : 1737 - 1750
  • [22] Hop Domination in Graphs-II
    Natarajan, C.
    Ayyaswamy, S. K.
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2015, 23 (02): : 187 - 199
  • [23] Closed Geodetic Hop Domination in Graphs
    Adolfo, Nina Jeane A.
    Aniversario, Imelda S.
    Jamil, Ferdinand P.
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2024, 17 (03): : 1618 - 1636
  • [24] Hop Domination in Chordal Bipartite Graphs
    Henning, Michael A.
    Pal, Saikat
    Pradhan, D.
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2023, 43 (03) : 825 - 840
  • [25] Global Hop Domination Numbers of Graphs
    Salasalan, Gemma P.
    Canoy, Sergio R., Jr.
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2021, 14 (01): : 112 - 125
  • [26] Locating-Hop Domination in Graphs
    Canoy Jr, Sergio R.
    Salasalan, Gemma P.
    KYUNGPOOK MATHEMATICAL JOURNAL, 2022, 62 (01): : 193 - 204
  • [27] On the independence transversal total domination number of graphs
    Cabrera Martinez, Abel
    Sigarreta Almira, Jose M.
    Yero, Ismael G.
    DISCRETE APPLIED MATHEMATICS, 2017, 219 : 65 - 73
  • [28] On Total Domination and Hop Domination in Diamond-Free Graphs
    Chen, Xue-gang
    Wang, Yu-feng
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2020, 43 (02) : 1885 - 1891
  • [29] On Total Domination and Hop Domination in Diamond-Free Graphs
    Xue-gang Chen
    Yu-feng Wang
    Bulletin of the Malaysian Mathematical Sciences Society, 2020, 43 : 1885 - 1891
  • [30] INDEPENDENT TRANSVERSAL DOMINATION NUMBER IN SOME REGULAR GRAPHS
    Pushpam, P. Roushini Leely
    Bhanthavi, K. Priya
    ADVANCES AND APPLICATIONS IN MATHEMATICAL SCIENCES, 2019, 19 (02): : 77 - 95