Hop Domination in Graphs-II

被引:73
|
作者
Natarajan, C. [1 ]
Ayyaswamy, S. K. [1 ]
机构
[1] SASTRA Univ, Dept Math, Sch Humanities & Sci, Thanjavur 613401, Tamil Nadu, India
关键词
Hop domination number; total domination number; connected domination number;
D O I
10.1515/auom-2015-0036
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G = (V, E) be a graph. A set S subset of V (G) is a hop dominating set of G if for every v is an element of V - S, there exists u is an element of S such that d(u, v) = 2. The minimum cardinality of a hop dominating set of G is called a hop domination number of G and is denoted by gamma(h)(G). In this paper we characterize the family of trees and unicyclic graphs for which gamma(h)(G) = gamma(t)(G) and gamma(h)(G) = gamma(c)(G) where gamma(t)(G) and gamma(c)(G) are the total domination and connected domination numbers of G respectively. We then present the strong equality of hop domination and hop independent domination numbers for trees. Hop domination numbers of shadow graph and mycielskian graph of graph are also discussed.
引用
收藏
页码:187 / 199
页数:13
相关论文
共 50 条
  • [1] Domination in graphoidally covered graphs: Least-kernel graphoidal graphs-II
    Gupta, Purnima
    Singh, Rajesh
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2018, 15 (01) : 63 - 71
  • [2] Revisiting Domination, Hop Domination, and Global Hop Domination in Graphs
    Salasalan, Gemma
    Canoy Jr, Sergio R.
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2021, 14 (04): : 1415 - 1428
  • [3] Hop Independent Hop Domination in Graphs
    Hassan, Javier A.
    Canoy, Sergio R.
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2022, 15 (04): : 1783 - 1796
  • [4] On edge neighborhood graphs-II
    Alsardary, Salar Y.
    Ali, Ali A.
    Balasubramanian, K.
    AZERBAIJAN JOURNAL OF MATHEMATICS, 2012, 2 (02): : 78 - 83
  • [5] CRITICALLY PARTITIONABLE GRAPHS-II
    THOMASON, A
    DISCRETE MATHEMATICS, 1982, 41 (01) : 67 - 77
  • [6] Hop domination polynomial of graphs
    Mojdeh, D. A.
    Emadi, A. S.
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2020, 23 (04): : 825 - 840
  • [7] Transversal Hop Domination in Graphs
    Bonsocan, Maria Andrea O.
    Jamil, Ferdinand P.
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2023, 16 (01): : 192 - 206
  • [8] Certified Hop Domination in Graphs
    Hassan, Javier A.
    Gamorez, Anabel E.
    Ahmad, Eman C.
    Hamja, Jamil J.
    INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE, 2024, 19 (04): : 1105 - 1110
  • [9] Convex Hop Domination in Graphs
    Hassan, Javier A.
    Canoy Jr, Sergio R.
    Saromines, Chrisley Jade
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2023, 16 (01): : 319 - 335
  • [10] SECURE HOP DOMINATION IN GRAPHS
    Mollejon, Reynaldo, V
    Canoy Jr, Sergio R.
    Canoy, John Gabriel E.
    ADVANCES AND APPLICATIONS IN MATHEMATICAL SCIENCES, 2019, 18 (12): : 1651 - 1663