Transversal Hop Domination in Graphs

被引:2
|
作者
Bonsocan, Maria Andrea O. [1 ]
Jamil, Ferdinand P. [2 ]
机构
[1] Mindanao State Univ, Iligan Inst Technol, Coll Sci & Math, Dept Math & Stat, Iligan 9200, Philippines
[2] Mindanao State Univ, Premier Res Inst Sci & Math, Iligan Inst Technol, Coll Sci & Math,Dept Math & Stat,Ctr Graph Theory, Iligan 9200, Philippines
来源
关键词
Key Words and Phrases; Hop dominating set; transversal hop dominating set; transversal hop domination number; SETS; CORONA; JOIN;
D O I
10.29020/nybg.ejpam.v16i1.4610
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a graph. A set S C V (G) is a hop dominating set of G if for every v E V (G)\S, there exists u E S such that dG(u, v) = 2. The minimum cardinality gamma h(G) of a hop dominating set is the hop domination number of G. Any hop dominating set of G of cardinality gamma h(G) is a gamma h-set of G. A hop dominating set S of G which intersects every gamma h-set of G is a transversal hop dominating set. The minimum cardinality gamma bh(G) of a transversal hop dominating set in G is the transversal hop domination number of G. In this paper, we initiate the study of transversal hop domination. First, we characterize graphs G whose values for gamma bh(G) are either n or n - 1, and we determine the specific values of gamma bh(G) for some specific graphs. Next, we show that for every positive integers a and b with a > 2 and b > 3a, there exists a connected graph G on b vertices such that gamma bh(G) = a. We also show that for every positive integers a and b with 2 < a < b, there exists a connected graph G for which gamma h(G) = a and gamma bh(G) = b. Finally, we investigate the transversal hop dominating sets in the join and corona of two graphs, and determine their corresponding transversal hop domination numbers.
引用
收藏
页码:192 / 206
页数:15
相关论文
共 50 条
  • [1] Transversal total hop domination in graphs
    Bonsocan, Maria Andrea O.
    Jamil, Ferdinand P.
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2024, 16 (07)
  • [2] Revisiting Domination, Hop Domination, and Global Hop Domination in Graphs
    Salasalan, Gemma
    Canoy Jr, Sergio R.
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2021, 14 (04): : 1415 - 1428
  • [3] On chromatic transversal domination in graphs
    Arumugam, S.
    Raja Chandrasekar, K.
    Journal of Combinatorial Mathematics and Combinatorial Computing, 2012, 83 : 13 - 21
  • [4] Transversal total domination in graphs
    Nayaka, S.R.
    Alwardi, Anwar
    Puttaswamy
    1600, Charles Babbage Research Centre (112): : 231 - 240
  • [5] INDEPENDENT TRANSVERSAL DOMINATION IN GRAPHS
    Hamid, Ismail Sahul
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2012, 32 (01) : 5 - 17
  • [6] Hop Independent Hop Domination in Graphs
    Hassan, Javier A.
    Canoy, Sergio R.
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2022, 15 (04): : 1783 - 1796
  • [7] Hop domination polynomial of graphs
    Mojdeh, D. A.
    Emadi, A. S.
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2020, 23 (04): : 825 - 840
  • [8] Certified Hop Domination in Graphs
    Hassan, Javier A.
    Gamorez, Anabel E.
    Ahmad, Eman C.
    Hamja, Jamil J.
    INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE, 2024, 19 (04): : 1105 - 1110
  • [9] Convex Hop Domination in Graphs
    Hassan, Javier A.
    Canoy Jr, Sergio R.
    Saromines, Chrisley Jade
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2023, 16 (01): : 319 - 335
  • [10] SECURE HOP DOMINATION IN GRAPHS
    Mollejon, Reynaldo, V
    Canoy Jr, Sergio R.
    Canoy, John Gabriel E.
    ADVANCES AND APPLICATIONS IN MATHEMATICAL SCIENCES, 2019, 18 (12): : 1651 - 1663