Pad? approximation for a class of hypergeometric functions and parametric geometry of numbers

被引:3
|
作者
Kawashima, Makoto [1 ]
Poels, Anthony [2 ]
机构
[1] Nihon Univ, Coll Ind Engn, Dept Liberal Arts & Basic Sci, Narashino, Chiba 2758575, Japan
[2] Nihon Univ, Coll Sci & Technol, Dept Math, Chiyoda Ku, Tokyo 1018308, Japan
关键词
Pad? approximation; Irrationality exponent; Hypergeometric functions; Effective Poincar?-Perron theorem; Parametric geometry of numbers; RATIONAL APPROXIMATION; LINEAR-FORMS; VALUES; IRRATIONALITY;
D O I
10.1016/j.jnt.2022.05.009
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article we obtain new irrationality measures for values of functions which belong to a certain class of hypergeometric functions including shifted logarithmic functions, binomial functions and shifted exponential functions. We explicitly construct Pade approximations by using a formal method and show that the associated sequences satisfy a Poincare-type recurrence. To study precisely the asymptotic behavior of those sequences, we establish an effective version of the Poincare-Perron theorem. As a consequence we obtain, among others, effective irrationality measures for values of binomial functions at rational numbers, which might have useful arithmetic applications. A general theorem on simultaneous rational approximations that we need is proven by using new arguments relying on parametric geometry of numbers.(c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页码:646 / 687
页数:42
相关论文
共 50 条
  • [1] Diophantine approximation and parametric geometry of numbers
    Wolfgang M. Schmidt
    Leonhard Summerer
    Monatshefte für Mathematik, 2013, 169 : 51 - 104
  • [2] Diophantine approximation and parametric geometry of numbers
    Schmidt, Wolfgang M.
    Summerer, Leonhard
    MONATSHEFTE FUR MATHEMATIK, 2013, 169 (01): : 51 - 104
  • [3] Hypergeometric functions and Fibonacci numbers
    Dilcher, K
    FIBONACCI QUARTERLY, 2000, 38 (04): : 342 - 363
  • [4] CLASS OF HYPERGEOMETRIC FUNCTIONS
    KARLSSON, PW
    PROCEEDINGS OF THE KONINKLIJKE NEDERLANDSE AKADEMIE VAN WETENSCHAPPEN SERIES A-MATHEMATICAL SCIENCES, 1976, 79 (01): : 36 - 40
  • [5] A variational principle in the parametric geometry of numbers, with applications to metric Diophantine approximation
    Das, Tushar
    Fishman, Lior
    Simmons, David
    Urbanski, Mariusz
    COMPTES RENDUS MATHEMATIQUE, 2017, 355 (08) : 835 - 846
  • [6] On parametric geometry of numbers
    Schmidt, Wolfgang M.
    ACTA ARITHMETICA, 2020, 195 (04) : 383 - 414
  • [7] Blossoming and Hermite-Padé approximation for hypergeometric series
    Rachid Ait-Haddou
    Marie-Laurence Mazure
    Numerical Algorithms, 2021, 88 : 1183 - 1214
  • [8] Hermite–Padé approximation, isomonodromic deformation and hypergeometric integral
    Toshiyuki Mano
    Teruhisa Tsuda
    Mathematische Zeitschrift, 2017, 285 : 397 - 431
  • [9] Bernoulli numbers and confluent hypergeometric functions
    Dilcher, K
    NUMBER THEORY FOR THE MILLENNIUM I, 2002, : 343 - 363
  • [10] Transformations for a class of hypergeometric functions
    Mudaliar, S
    JOURNAL OF ELECTROMAGNETIC WAVES AND APPLICATIONS, 2000, 14 (09) : 1185 - 1202