Pad? approximation for a class of hypergeometric functions and parametric geometry of numbers

被引:3
|
作者
Kawashima, Makoto [1 ]
Poels, Anthony [2 ]
机构
[1] Nihon Univ, Coll Ind Engn, Dept Liberal Arts & Basic Sci, Narashino, Chiba 2758575, Japan
[2] Nihon Univ, Coll Sci & Technol, Dept Math, Chiyoda Ku, Tokyo 1018308, Japan
关键词
Pad? approximation; Irrationality exponent; Hypergeometric functions; Effective Poincar?-Perron theorem; Parametric geometry of numbers; RATIONAL APPROXIMATION; LINEAR-FORMS; VALUES; IRRATIONALITY;
D O I
10.1016/j.jnt.2022.05.009
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article we obtain new irrationality measures for values of functions which belong to a certain class of hypergeometric functions including shifted logarithmic functions, binomial functions and shifted exponential functions. We explicitly construct Pade approximations by using a formal method and show that the associated sequences satisfy a Poincare-type recurrence. To study precisely the asymptotic behavior of those sequences, we establish an effective version of the Poincare-Perron theorem. As a consequence we obtain, among others, effective irrationality measures for values of binomial functions at rational numbers, which might have useful arithmetic applications. A general theorem on simultaneous rational approximations that we need is proven by using new arguments relying on parametric geometry of numbers.(c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页码:646 / 687
页数:42
相关论文
共 50 条
  • [21] Continued fractions and Parametric geometry of numbers
    Keita, Aminata
    JOURNAL DE THEORIE DES NOMBRES DE BORDEAUX, 2017, 29 (01): : 129 - 135
  • [22] On Schmidt and Summerer parametric geometry of numbers
    Roy, Damien
    ANNALS OF MATHEMATICS, 2015, 182 (02) : 739 - 786
  • [23] PARAMETRIC GEOMETRY OF NUMBERS IN FUNCTION FIELDSD
    Roy, Damien
    Waldschmidt, Michel
    MATHEMATIKA, 2017, 63 (03) : 1114 - 1135
  • [24] A variational principle in the parametric geometry of numbers
    Das, Tushar
    Fishman, Lior
    Simmons, David
    Urbanski, Mariusz
    ADVANCES IN MATHEMATICS, 2024, 437
  • [25] A Parametric Interval Approximation of Fuzzy Numbers
    Anzilli, Luca
    Facchinetti, Gisella
    SOFT COMPUTING IN COMPUTER AND INFORMATION SCIENCE, 2015, 342 : 49 - 62
  • [26] Certain Class of Generating Functions for the Incomplete Hypergeometric Functions
    Choi, Junesang
    Agarwal, Praveen
    ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [27] Padé Approximations and Irrationality Measures on Values of Confluent Hypergeometric Functions
    Hu, Jiaxin
    Yu, Chenglong
    Zhou, Kangyun
    MATHEMATICS, 2024, 12 (16)
  • [28] Padé and Padé-Type Approximation for 2π-Periodic Lp Functions
    Nicholas J. Daras
    Acta Applicandae Mathematica, 2000, 62 : 245 - 343
  • [29] The approximation of functions of large numbers
    Hamy, M
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES, 1922, 174 : 979 - 980
  • [30] Hermite-Padé Rational Approximation to Irrational Numbers
    Walter Van Assche
    Computational Methods and Function Theory, 2011, 10 (2) : 585 - 602