Transonic Aerodynamic-Structural Coupling Characteristics Predicted by Nonlinear Data-Driven Modeling Approach

被引:5
|
作者
Yao, Xiangjie [1 ]
Huang, Rui [1 ]
Hu, Haiyan [1 ]
Liu, Haojie [1 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Inst Vibrat Engn Res, State Key Lab Mech & Control Aerosp Struct, Nanjing 210016, Peoples R China
基金
中国国家自然科学基金;
关键词
Aeroelastic Analysis; Data-Driven Model; Nonlinear Aeroelasticity; Reduced Order Model; Flutter Analysis; REDUCED-ORDER MODELS; SPARSE IDENTIFICATION; AEROELASTIC ANALYSIS; FLUTTER BOUNDARY; DECOMPOSITION; REDUCTION; DYNAMICS; FLOWS;
D O I
10.2514/1.J063360
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
Accurate prediction of nonlinear aerodynamics is essential for the transonic aeroelastic analysis of flight vehicles. Though reduced-order aerodynamic models are cheap and reasonable tools, it is still a tough problem to accurately evaluate the unsteady pressure distributions on the surface of an elastic structure. This paper presents a nonlinear data-driven modeling approach based on the high-fidelity simulations in the following three steps. The first step is to compute the dominant modes of unsteady pressure distributions through the proper orthogonal decomposition. The pressure snapshots used for the feature extraction are sampled under a multilevel sine-sweep excitation. The second step is to obtain the low-dimensional temporal dynamics of the coefficients of these modes via polynomial nonlinear state-space identification. The linear estimation implemented by employing the dynamic mode decomposition with control algorithm serves as the initialization of the nonlinear optimization. The third step is to reconstruct the unsteady pressure distributions under arbitrary structural excitation from the temporal coefficients. The paper validates the approach via two numerical examples of the transonic aerodynamic-structural coupling problem. One is an NACA0012 airfoil, and the other is an AGARD 445.6 wing. The examples show that the proposed approach exhibits both accurate and robust performance in the prediction of unsteady pressure distributions, aerodynamic forces, and aeroelastic responses. In particular, the approach well predicts the physical features at the fluid-structure coupling interface, previously neglected in the system identification of aerodynamic systems. Therefore, the approach serves as a promising tool for data-driven aeroelastic analysis.
引用
收藏
页码:1159 / 1178
页数:20
相关论文
共 50 条
  • [41] Data-driven modeling for the dynamic behavior of nonlinear vibratory systems
    Liu, Huizhen
    Zhao, Chengying
    Huang, Xianzhen
    Yao, Guo
    NONLINEAR DYNAMICS, 2023, 111 (12) : 10809 - 10834
  • [42] Exploring data-driven modeling and analysis of nonlinear pathological tremors
    Wang, Jiamin
    Barry, Oumar R.
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2021, 156
  • [43] Data-driven modeling for the dynamic behavior of nonlinear vibratory systems
    Huizhen Liu
    Chengying Zhao
    Xianzhen Huang
    Guo Yao
    Nonlinear Dynamics, 2023, 111 : 10809 - 10834
  • [44] Tool wear estimation with a data-driven physics coupling approach
    Zhang, Yu
    Zhu, Kunpeng
    MANUFACTURING LETTERS, 2022, 34 : 38 - 42
  • [45] Data-driven approach for fault detection and isolation in nonlinear system
    Kallas, Maya
    Mourot, Gilles
    Maquin, Didier
    Ragot, Jose
    INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 2018, 32 (11) : 1569 - 1590
  • [46] LFT Representation of a Class of Nonlinear Systems: A Data-Driven Approach
    Sinha, Sourav
    Muniraj, Devaprakash
    Farhood, Mazen
    2021 EUROPEAN CONTROL CONFERENCE (ECC), 2021, : 866 - 871
  • [47] A data-driven approach to model calibration for nonlinear dynamical systems
    Greve, C. M.
    Hara, K.
    Martin, R. S.
    Eckhardt, D. Q.
    Koo, J. W.
    JOURNAL OF APPLIED PHYSICS, 2019, 125 (24)
  • [48] Data-driven control of nonlinear systems: An online sequential approach
    Vu, Minh
    Huang, Yunshen
    Zeng, Shen
    Systems and Control Letters, 2024, 193
  • [49] Data-Driven Nonlinear Modal Analysis: A Deep Learning Approach
    Li, Shanwu
    Yang, Yongchao
    NONLINEAR STRUCTURES & SYSTEMS, VOL 1, 2023, : 229 - 231
  • [50] Data-Driven Modeling of Operating Characteristics of Hydroelectric Generating Units
    Hunter-Rinderle R.
    Sioshansi R.
    Current Sustainable/Renewable Energy Reports, 2021, 8 (04): : 199 - 206