Transonic Aerodynamic-Structural Coupling Characteristics Predicted by Nonlinear Data-Driven Modeling Approach

被引:5
|
作者
Yao, Xiangjie [1 ]
Huang, Rui [1 ]
Hu, Haiyan [1 ]
Liu, Haojie [1 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Inst Vibrat Engn Res, State Key Lab Mech & Control Aerosp Struct, Nanjing 210016, Peoples R China
基金
中国国家自然科学基金;
关键词
Aeroelastic Analysis; Data-Driven Model; Nonlinear Aeroelasticity; Reduced Order Model; Flutter Analysis; REDUCED-ORDER MODELS; SPARSE IDENTIFICATION; AEROELASTIC ANALYSIS; FLUTTER BOUNDARY; DECOMPOSITION; REDUCTION; DYNAMICS; FLOWS;
D O I
10.2514/1.J063360
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
Accurate prediction of nonlinear aerodynamics is essential for the transonic aeroelastic analysis of flight vehicles. Though reduced-order aerodynamic models are cheap and reasonable tools, it is still a tough problem to accurately evaluate the unsteady pressure distributions on the surface of an elastic structure. This paper presents a nonlinear data-driven modeling approach based on the high-fidelity simulations in the following three steps. The first step is to compute the dominant modes of unsteady pressure distributions through the proper orthogonal decomposition. The pressure snapshots used for the feature extraction are sampled under a multilevel sine-sweep excitation. The second step is to obtain the low-dimensional temporal dynamics of the coefficients of these modes via polynomial nonlinear state-space identification. The linear estimation implemented by employing the dynamic mode decomposition with control algorithm serves as the initialization of the nonlinear optimization. The third step is to reconstruct the unsteady pressure distributions under arbitrary structural excitation from the temporal coefficients. The paper validates the approach via two numerical examples of the transonic aerodynamic-structural coupling problem. One is an NACA0012 airfoil, and the other is an AGARD 445.6 wing. The examples show that the proposed approach exhibits both accurate and robust performance in the prediction of unsteady pressure distributions, aerodynamic forces, and aeroelastic responses. In particular, the approach well predicts the physical features at the fluid-structure coupling interface, previously neglected in the system identification of aerodynamic systems. Therefore, the approach serves as a promising tool for data-driven aeroelastic analysis.
引用
收藏
页码:1159 / 1178
页数:20
相关论文
共 50 条
  • [31] A Convex Data-Driven Approach for Nonlinear Control Synthesis
    Choi, Hyungjin
    Vaidya, Umesh
    Chen, Yongxin
    MATHEMATICS, 2021, 9 (19)
  • [32] Empirical mode modeling A data-driven approach to recover and forecast nonlinear dynamics from noisy data
    Park, Joseph
    Pao, Gerald M.
    Sugihara, George
    Stabenau, Erik
    Lorimer, Thomas
    NONLINEAR DYNAMICS, 2022, 108 (03) : 2147 - 2160
  • [33] A data-driven approach to morphogenesis under structural instability
    Zhao, Yingjie
    Xu, Zhiping
    CELL REPORTS PHYSICAL SCIENCE, 2024, 5 (03):
  • [34] Kinetic data-driven approach to turbulence subgrid modeling
    Ortali, G.
    Gabbana, A.
    Demo, N.
    Rozza, G.
    Toschi, F.
    PHYSICAL REVIEW RESEARCH, 2025, 7 (01):
  • [35] Data-driven modeling of impedance biosensors: a subspace approach
    Ramirez-Chavarria, Roberto G.
    Alvarez-Serna, Bryan E.
    Schoukens, Maarten
    Alvarez-Icaza, Luis
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2021, 32 (10)
  • [36] Data-Driven Modeling Approach for Mistuned Cyclic Structures
    Kelly, Sean T.
    Lupini, Andrea
    Epureanu, Bogdan, I
    AIAA JOURNAL, 2021, 59 (07) : 2684 - 2696
  • [37] Data-driven structural identification of nonlinear assemblies: Uncertainty Quantification
    Safari, Sina
    Montalvao, Diogo
    Monsalve, Julian M. Londono
    INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2025, 170
  • [38] Nonlinear, data-driven modeling of cerebrovascular and respiratory control mechanisms
    Mitsis, Georgios D.
    2009 9TH INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY AND APPLICATIONS IN BIOMEDICINE, 2009, : 531 - 534
  • [39] Online data-driven fuzzy modeling for nonlinear dynamic systems
    Hao, WJ
    Qiang, WY
    Chai, QX
    Tang, JL
    Proceedings of 2005 International Conference on Machine Learning and Cybernetics, Vols 1-9, 2005, : 2634 - 2639
  • [40] Tremor Quantification through Data-driven Nonlinear System Modeling
    Medvedev, Alexander
    Olsson, Fredrik
    Wigren, Torbjorn
    2017 IEEE 56TH ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2017,