Context-aware lightweight remote-sensing image super-resolution network

被引:0
|
作者
Peng, Guangwen [1 ]
Xie, Minghong [1 ]
Fang, Liuyang [2 ]
机构
[1] Kunming Univ Sci & Technol, Fac Informat Engn & Automat, Kunming, Peoples R China
[2] Yunnan Key Lab Digital Commun, Kunming, Peoples R China
关键词
convolutional neural network; transformer; remote-sensing image super-resolution; lightweight network; context-aware;
D O I
10.3389/fnbot.2023.1220166
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In recent years, remote-sensing image super-resolution (RSISR) methods based on convolutional neural networks (CNNs) have achieved significant progress. However, the limited receptive field of the convolutional kernel in CNNs hinders the network's ability to effectively capture long-range features in images, thus limiting further improvements in model performance. Additionally, the deployment of existing RSISR models to terminal devices is challenging due to their high computational complexity and large number of parameters. To address these issues, we propose a Context-Aware Lightweight Super-Resolution Network (CALSRN) for remote-sensing images. The proposed network primarily consists of Context-Aware Transformer Blocks (CATBs), which incorporate a Local Context Extraction Branch (LCEB) and a Global Context Extraction Branch (GCEB) to explore both local and global image features. Furthermore, a Dynamic Weight Generation Branch (DWGB) is designed to generate aggregation weights for global and local features, enabling dynamic adjustment of the aggregation process. Specifically, the GCEB employs a Swin Transformer-based structure to obtain global information, while the LCEB utilizes a CNN-based cross-attention mechanism to extract local information. Ultimately, global and local features are aggregated using the weights acquired from the DWGB, capturing the global and local dependencies of the image and enhancing the quality of super-resolution reconstruction. The experimental results demonstrate that the proposed method is capable of reconstructing high-quality images with fewer parameters and less computational complexity compared with existing methods.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] A Lightweight Feature Distillation and Enhancement Network for Super-Resolution Remote Sensing Images
    Gao, Feng
    Li, Liangliang
    Wang, Jiawen
    Sun, Kaipeng
    Lv, Ming
    Jia, Zhenhong
    Ma, Hongbing
    SENSORS, 2023, 23 (08)
  • [32] A very lightweight image super-resolution network
    Bai, Haomou
    Liang, Xiao
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [33] CGC-Net: A Context-Guided Constrained Network for Remote-Sensing Image Super Resolution
    Zheng, Pengcheng
    Jiang, Jianan
    Zhang, Yan
    Zeng, Chengxiao
    Qin, Chuanchuan
    Li, Zhenghao
    REMOTE SENSING, 2023, 15 (12)
  • [34] Double Prior Network for Multidegradation Remote Sensing Image Super-Resolution
    Shi, Mengyang
    Gao, Yesheng
    Chen, Lin
    Liu, Xingzhao
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2023, 16 : 3131 - 3147
  • [35] Stacked Lossless Deconvolutional Network for Remote Sensing Image Super-resolution
    Shin, Changyeop
    Kim, Minbeom
    Kim, Sungho
    Kim, Youngjung
    IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING XXV, 2019, 11155
  • [36] Inception residual attention network for remote sensing image super-resolution
    Lei, Pengcheng
    Liu, Cong
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2020, 41 (24) : 9565 - 9587
  • [37] An improved generative adversarial network for remote sensing image super-resolution
    Guo, Jifeng
    Lv, Feicai
    Shen, Jiayou
    Liu, Jing
    Wang, Mingzhi
    IET IMAGE PROCESSING, 2023, 17 (06) : 1852 - 1863
  • [38] A novel neural network for super-resolution remote sensing image reconstruction
    Huo, Xing
    Tang, Ronglin
    Ma, Lingling
    Shao, Kun
    Yang, YongHua
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2019, 40 (5-6) : 2375 - 2385
  • [39] Global sparse attention network for remote sensing image super-resolution
    Hu, Tao
    Chen, Zijie
    Wang, Mingyi
    Hou, Xintong
    Lu, Xiaoping
    Pan, Yuanyuan
    Li, Jianqing
    KNOWLEDGE-BASED SYSTEMS, 2024, 304
  • [40] Multiattention Generative Adversarial Network for Remote Sensing Image Super-Resolution
    Jia, Sen
    Wang, Zhihao
    Li, Qingquan
    Jia, Xiuping
    Xu, Meng
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60