Context-aware lightweight remote-sensing image super-resolution network

被引:0
|
作者
Peng, Guangwen [1 ]
Xie, Minghong [1 ]
Fang, Liuyang [2 ]
机构
[1] Kunming Univ Sci & Technol, Fac Informat Engn & Automat, Kunming, Peoples R China
[2] Yunnan Key Lab Digital Commun, Kunming, Peoples R China
关键词
convolutional neural network; transformer; remote-sensing image super-resolution; lightweight network; context-aware;
D O I
10.3389/fnbot.2023.1220166
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In recent years, remote-sensing image super-resolution (RSISR) methods based on convolutional neural networks (CNNs) have achieved significant progress. However, the limited receptive field of the convolutional kernel in CNNs hinders the network's ability to effectively capture long-range features in images, thus limiting further improvements in model performance. Additionally, the deployment of existing RSISR models to terminal devices is challenging due to their high computational complexity and large number of parameters. To address these issues, we propose a Context-Aware Lightweight Super-Resolution Network (CALSRN) for remote-sensing images. The proposed network primarily consists of Context-Aware Transformer Blocks (CATBs), which incorporate a Local Context Extraction Branch (LCEB) and a Global Context Extraction Branch (GCEB) to explore both local and global image features. Furthermore, a Dynamic Weight Generation Branch (DWGB) is designed to generate aggregation weights for global and local features, enabling dynamic adjustment of the aggregation process. Specifically, the GCEB employs a Swin Transformer-based structure to obtain global information, while the LCEB utilizes a CNN-based cross-attention mechanism to extract local information. Ultimately, global and local features are aggregated using the weights acquired from the DWGB, capturing the global and local dependencies of the image and enhancing the quality of super-resolution reconstruction. The experimental results demonstrate that the proposed method is capable of reconstructing high-quality images with fewer parameters and less computational complexity compared with existing methods.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] LCCN: A Lightweight Capture Context Network for Image Super-Resolution
    Wen, Changchun
    Liang, Hu
    Zhao, Shengrong
    2023 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IJCNN, 2023,
  • [22] LEARNING CONTEXT-AWARE SPARSE REPRESENTATION FOR SINGLE IMAGE SUPER-RESOLUTION
    Yang, Min-Chun
    Wang, Chang-Heng
    Hu, Ting-Yao
    Wang, Yu-Chiang Frank
    2011 18TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2011, : 1349 - 1352
  • [23] Super-resolution Restoration of Remote-sensing Images
    刘扬阳
    金伟其
    苏秉华
    陈华
    张楠
    Journal of China Ordnance, 2006, (01) : 43 - 46
  • [24] Scale-Aware Distillation Network for Lightweight Image Super-Resolution
    Lu, Haowei
    Lu, Yao
    Li, Gongping
    Sun, Yanbei
    Wang, Shunzhou
    Li, Yugang
    PATTERN RECOGNITION AND COMPUTER VISION,, PT III, 2021, 13021 : 128 - 139
  • [25] Information Purification Network for Remote Sensing Image Super-Resolution
    Wang, Zheyuan
    Li, Liangliang
    Xing, Linxin
    Wang, Jiawen
    Sun, Kaipeng
    Ma, Hongbing
    TSINGHUA SCIENCE AND TECHNOLOGY, 2023, 28 (02): : 310 - 321
  • [26] Local-Global Context-Aware Generative Dual-Region Adversarial Networks for Remote Sensing Scene Image Super-Resolution
    Li, Huiting
    Deng, Weihuan
    Zhu, Qiqi
    Guan, Qingfeng
    Luo, Jiancheng
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 14
  • [27] CFGN: A Lightweight Context Feature Guided Network for Image Super-Resolution
    Dai, Tao
    Ya, Mengxi
    Li, Jinmin
    Zhang, Xinyi
    Xia, Shu-Tao
    Zhu, Zexuan
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2024, 8 (01): : 855 - 865
  • [28] Efficient Remote Sensing Image Super-Resolution via Lightweight Diffusion Models
    An, Tai
    Xue, Bin
    Huo, Chunlei
    Xiang, Shiming
    Pan, Chunhong
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2024, 21 : 1 - 5
  • [29] MWLN: Multilevel Wavelet Learning Network for Continuous-Scale Remote-Sensing Image Super-Resolution
    Liu, Baodi
    Zhao, Lifei
    Liu, Weifeng
    Li, Ye
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2024, 21 : 1 - 5
  • [30] Lightweight Feedback Convolution Neural Network for Remote Sensing Images Super-Resolution
    Wang, Jin
    Wu, Yiming
    Wang, Liu
    Wang, Lei
    Alfarraj, Osama
    Tolba, Amr
    IEEE ACCESS, 2021, 9 : 15992 - 16003