Cellular objects in isotropic motivic categories

被引:1
|
作者
Tanania, Fabio [1 ]
机构
[1] Ludwig Maximilians Univ Munchen, Math Inst, Munich, Germany
关键词
SPECTRA;
D O I
10.2140/gt.2023.27.2013
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Our main purpose is to describe the category of isotropic cellular spectra over flexible fields. Guided by Gheorghe, Wang and Xu (Acta Math. 226 (2021) 319-407), we show that it is equivalent, as a stable 1-category equipped with a t-structure, to the derived category of left comodules over the dual of the classical topological Steenrod algebra. In order to obtain this result, the category of isotropic cellular modules over the motivic Brown-Peterson spectrum is also studied, and isotropic Adams and Adams-Novikov spectral sequences are developed. As a consequence, we also compute hom sets in the category of isotropic Tate motives between motives of isotropic cellular spectra.
引用
收藏
页码:2013 / 2048
页数:37
相关论文
共 50 条
  • [1] Thom isomorphisms in triangulated motivic categories
    Ananyevskiy, Alexey
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2021, 21 (04): : 2085 - 2106
  • [2] Quasi DG categories and mixed motivic sheaves
    Hanamura, Masaki
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2015, 219 (07) : 2816 - 2900
  • [3] MOTIVIC REALIZATIONS OF SINGULARITY CATEGORIES AND VANISHING CYCLES
    Blanc, Anthony
    Robalo, Marco
    Toen, Bertrand
    Vezzosi, Gabriele
    JOURNAL DE L ECOLE POLYTECHNIQUE-MATHEMATIQUES, 2018, 5 : 651 - 747
  • [4] Motivic zeta functions in additive monoidal categories
    Kimura, Kenichiro
    Kimura, Shun-ichi
    Takahashi, Nobuyoshi
    JOURNAL OF K-THEORY, 2012, 9 (03) : 459 - 473
  • [5] Motivic decomposition of isotropic projective homogeneous varieties
    Chernousov, V
    Gille, S
    Merkurjev, A
    DUKE MATHEMATICAL JOURNAL, 2005, 126 (01) : 137 - 159
  • [6] Isotropic stable motivic homotopy groups of spheres
    Tanania, Fabio
    ADVANCES IN MATHEMATICS, 2021, 383
  • [7] SMOOTH WEIGHT STRUCTURES AND BIRATIONALITY FILTRATIONS ON MOTIVIC CATEGORIES
    Bondarko, M. V.
    Kumallagov, D. Z.
    ST PETERSBURG MATHEMATICAL JOURNAL, 2022, 33 (05) : 777 - 796
  • [8] Synthetic spectra and the cellular motivic category
    Pstragowski, Piotr
    INVENTIONES MATHEMATICAE, 2023, 232 (02) : 553 - 681
  • [9] Synthetic spectra and the cellular motivic category
    Piotr Pstrągowski
    Inventiones mathematicae, 2023, 232 : 553 - 681
  • [10] Automorphic Objects in Categories
    H. Sibert
    Siberian Mathematical Journal, 2000, 41 : 1188 - 1199