Thom isomorphisms in triangulated motivic categories

被引:0
|
作者
Ananyevskiy, Alexey [1 ]
机构
[1] PDMI RAS, St Petersburg Dept, Steklov Math Inst, St Petersburg, Russia
来源
ALGEBRAIC AND GEOMETRIC TOPOLOGY | 2021年 / 21卷 / 04期
基金
俄罗斯基础研究基金会;
关键词
ETALE REALIZATION; A(1)-HOMOTOPY THEORY; MODULES;
D O I
10.2140/agt.2021.21.2085
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that a triangulated motivic category admits categorical Thom isomorphisms for vector bundles with an additional structure if and only if the generalized motivic cohomology theory represented by the tensor unit object admits Thom classes. We also show that the stable A(1)-derived category does not admit Thom isomorphisms for oriented vector bundles and, more generally, for symplectic bundles. In order to do so we compute the first homology sheaves of the motivic sphere spectrum and show that the class in the coefficient ring of A(1)-homology corresponding to the second motivic Hopf map nu is nonzero, which provides an obstruction to the existence of a reasonable theory of Thom classes in A(1)-cohomology.
引用
收藏
页码:2085 / 2106
页数:22
相关论文
共 50 条
  • [1] Triangulated surfaces in triangulated categories
    Dyckerhoff, Tobias
    Kapranov, Mikhail
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2018, 20 (06) : 1473 - 1524
  • [2] Motivic exponential integrals and a Motivic Thom-Sebastiani theorem
    Denef, J
    Loeser, F
    DUKE MATHEMATICAL JOURNAL, 1999, 99 (02) : 285 - 309
  • [3] SUBFACTOR CATEGORIES OF TRIANGULATED CATEGORIES
    Xu, Jinde
    Zhou, Panyue
    Ouyang, Baiyu
    COMMUNICATIONS IN ALGEBRA, 2015, 43 (12) : 5168 - 5182
  • [4] Triangulated functors and localizations of triangulated categories
    TRIANGULATED CATEGORIES, 2001, (148): : 73 - 101
  • [5] LOCALIZATION OF TRIANGULATED CATEGORIES AND DERIVED CATEGORIES
    MIYACHI, J
    JOURNAL OF ALGEBRA, 1991, 141 (02) : 463 - 483
  • [6] Stratifying triangulated categories
    Benson, Dave
    Iyengar, Srikanth B.
    Krause, Henning
    JOURNAL OF TOPOLOGY, 2011, 4 (03) : 641 - 666
  • [7] Descent in triangulated categories
    Paul Balmer
    Mathematische Annalen, 2012, 353 : 109 - 125
  • [8] Quotient triangulated categories
    Chen, Xiao-Wu
    Zhang, Pu
    MANUSCRIPTA MATHEMATICA, 2007, 123 (02) : 167 - 183
  • [9] DEPTH FOR TRIANGULATED CATEGORIES
    Liu, Yanping
    Liu, Zhongkui
    Yang, Xiaoyan
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2016, 53 (02) : 551 - 559
  • [10] TRIANGULATED QUOTIENT CATEGORIES
    Liu, Yu
    Zhu, Bin
    COMMUNICATIONS IN ALGEBRA, 2013, 41 (10) : 3720 - 3738