Thom isomorphisms in triangulated motivic categories

被引:0
|
作者
Ananyevskiy, Alexey [1 ]
机构
[1] PDMI RAS, St Petersburg Dept, Steklov Math Inst, St Petersburg, Russia
来源
ALGEBRAIC AND GEOMETRIC TOPOLOGY | 2021年 / 21卷 / 04期
基金
俄罗斯基础研究基金会;
关键词
ETALE REALIZATION; A(1)-HOMOTOPY THEORY; MODULES;
D O I
10.2140/agt.2021.21.2085
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that a triangulated motivic category admits categorical Thom isomorphisms for vector bundles with an additional structure if and only if the generalized motivic cohomology theory represented by the tensor unit object admits Thom classes. We also show that the stable A(1)-derived category does not admit Thom isomorphisms for oriented vector bundles and, more generally, for symplectic bundles. In order to do so we compute the first homology sheaves of the motivic sphere spectrum and show that the class in the coefficient ring of A(1)-homology corresponding to the second motivic Hopf map nu is nonzero, which provides an obstruction to the existence of a reasonable theory of Thom classes in A(1)-cohomology.
引用
收藏
页码:2085 / 2106
页数:22
相关论文
共 50 条
  • [21] Derived and Triangulated Categories
    Lipman, Joseph
    Hashimoto, Mitsuyasu
    FOUNDATIONS OF GROTHENDIECK DUALITY FOR DIAGRAMS OF SCHEMES, 2009, 1960 : 11 - 42
  • [22] Separability and triangulated categories
    Balmer, Paul
    ADVANCES IN MATHEMATICS, 2011, 226 (05) : 4352 - 4372
  • [23] Determinants in triangulated categories
    Vaknin, A
    K-THEORY, 2001, 24 (01): : 57 - 68
  • [24] Quotient triangulated categories
    Xiao-Wu Chen
    Pu Zhang
    manuscripta mathematica, 2007, 123 : 167 - 183
  • [25] Triangulated Categories of Periodic Complexes and Orbit Categories
    Liu, Jian
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2023, 73 (03) : 765 - 792
  • [26] Triangulated categories of periodic complexes and orbit categories
    Jian Liu
    Czechoslovak Mathematical Journal, 2023, 73 : 765 - 792
  • [27] A note on equivariantization of additive categories and triangulated categories
    Sun, Chao
    JOURNAL OF ALGEBRA, 2019, 534 : 483 - 530
  • [28] Gluing approximable triangulated categories
    Burke, Jesse
    Neeman, Amnon
    Pauwels, Bregje
    FORUM OF MATHEMATICS SIGMA, 2023, 11
  • [29] Homological Systems in Triangulated Categories
    Mendoza, O.
    Santiago, V.
    APPLIED CATEGORICAL STRUCTURES, 2016, 24 (01) : 1 - 35
  • [30] UNIQUENESS OF ENHANCEMENT FOR TRIANGULATED CATEGORIES
    Lunts, Valery A.
    Orlov, Dmitri O.
    JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 23 (03) : 853 - 908