Synthetic spectra and the cellular motivic category

被引:5
|
作者
Pstragowski, Piotr [1 ]
机构
[1] Harvard Univ, Cambridge, MA 02138 USA
关键词
HOMOTOPY; COHOMOLOGY; QUOTIENTS; ALGEBRAS;
D O I
10.1007/s00222-022-01173-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
To an Adams-type homology theory we associate the notion of a synthetic spectrum; this is a product-preserving sheaf on the site of finite spectra with projective E-homology. We show that the infinity-category SynE of synthetic spectra based on E is in a precise sense a deformation of the infinity-category of spectra into quasi-coherent sheaves over a certain algebraic stack, and show that this deformation encodes the E*-based Adams spectral sequence. We describe a symmetric monoidal functor from the infinity-category of cellular motivic spectra over Spec(C) into an even variant of synthetic spectra based on MU and show that it induces an equivalence between the infinity-categories of p-complete objects for all primes p. In particular, it follows that the p-complete cellular motivic category can be described purely in terms of chromatic homotopy theory.
引用
收藏
页码:553 / 681
页数:129
相关论文
共 50 条
  • [1] Synthetic spectra and the cellular motivic category
    Piotr Pstrągowski
    Inventiones mathematicae, 2023, 232 : 553 - 681
  • [2] The Chow t-structure on the ∞-category of motivic spectra
    Bachmann, Tom
    Kong, Hana Jia
    Wang, Guozhen
    Xu, Zhouli
    ANNALS OF MATHEMATICS, 2022, 195 (02) : 707 - 773
  • [3] An abelian category of motivic sheaves
    Arapura, Donu
    ADVANCES IN MATHEMATICS, 2013, 233 (01) : 135 - 195
  • [4] ON THE RATIONAL MOTIVIC HOMOTOPY CATEGORY
    Deglise, Frederic
    Fasel, Jean
    Jin, Fangzhou
    Khan, Adeel A.
    JOURNAL DE L ECOLE POLYTECHNIQUE-MATHEMATIQUES, 2021, 8 : 533 - 583
  • [5] Motivic Coarse Spectra
    Bunke, Ulrich
    Engel, Alexander
    HOMOTOPY THEORY WITH BORNOLOGICAL COARSE SPACES, 2020, 2269 : 35 - 51
  • [6] Geometrical symmetric powers in the motivic homotopy category
    Palacios, Joe
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2019, 223 (12) : 5396 - 5408
  • [7] Enriched simplicial presheaves and the motivic homotopy category
    Herrmann, Philip
    Strunk, Florian
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2011, 215 (07) : 1663 - 1668
  • [8] Affine quadrics and the Picard group of the motivic category
    Vishik, Alexander
    COMPOSITIO MATHEMATICA, 2019, 155 (08) : 1500 - 1520
  • [9] Group schemes and motivic spectra
    Grigory Garkusha
    Israel Journal of Mathematics, 2024, 259 : 727 - 758
  • [10] Remarks on motivic Moore spectra
    Roendings, Oliver
    MOTIVIC HOMOTOPY THEORY AND REFINED ENUMERATIVE GEOMETRY, 2020, 745 : 199 - 215