Error profile for discontinuous Galerkin time stepping of parabolic PDEs

被引:0
|
作者
McLean, William [1 ]
Mustapha, Kassem [1 ]
机构
[1] Univ New South Wales, Sch Math & Stat, Kensington, NSW 2052, Australia
关键词
Superconvergence; Post-processing; Gauss-Radau quadrature; Legendre polynomials; DISCRETIZATION; ORDER;
D O I
10.1007/s11075-022-01410-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the time discretization of a linear parabolic problem by the discontinuous Galerkin (DG) method using piecewise polynomials of degree at most r -1 in t, for r >= 1 and with maximum step size k. It is well known that the spatial L-2-norm of the DG error is of optimal order k(r) globally in time, and is, for r >= 2, superconvergent of order k(2r-1) at the nodes. We show that on the nth subinterval (t(n-1),t(n)), the dominant term in the DG error is proportional to the local right Radau polynomial of degree r. This error profile implies that the DG error is of order k(r+1) at the right-hand Gauss-Radau quadrature points in each interval. We show that the norm of the jump in the DG solution at the left end point t(n-1) provides an accurate a posteriori estimate for the maximum error over the subinterval (t(n-1),t(n)). Furthermore, a simple post-processing step yields a continuous piecewise polynomial of degree r with the optimal global convergence rate of order k(r+1). We illustrate these results with some numerical experiments.
引用
收藏
页码:157 / 177
页数:21
相关论文
共 50 条
  • [41] Performance of discontinuous Galerkin methods for elliptic PDEs
    Castillo, P
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2002, 24 (02): : 524 - 547
  • [42] Discontinuous Galerkin methods for Hamiltonian ODEs and PDEs
    Tang, Wensheng
    Sun, Yajuan
    Cai, Wenjun
    JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 330 : 340 - 364
  • [43] Error Estimates on Hybridizable Discontinuous Galerkin Methods for Parabolic Equations with Nonlinear Coefficients
    Moon, Minam
    Jun, Hyung Kyu
    Suh, Tay
    ADVANCES IN MATHEMATICAL PHYSICS, 2017, 2017
  • [44] Exponential convergence of hp-time-stepping in space-time discretizations of parabolic PDES*
    Perugia, Ilaria
    Schwab, Christoph
    Zank, Marco
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2023, 57 (01) : 29 - 67
  • [45] An ADER discontinuous Galerkin method with local time-stepping for transient electromagnetics
    Qi, Hongxin
    Wang, Xianghui
    Zhang, Jie
    Wang, Jianguo
    COMPUTER PHYSICS COMMUNICATIONS, 2018, 229 : 106 - 115
  • [46] On Efficient Time Stepping using the Discontinuous Galerkin Method for Numerical Weather Prediction
    Dedner, Andreas
    Klofkorn, Robert
    PARALLEL COMPUTING: ON THE ROAD TO EXASCALE, 2016, 27 : 627 - 636
  • [47] Multilevel and local time-stepping discontinuous Galerkin methods for magma dynamics
    Tirupathi, S.
    Hesthaven, J. S.
    Liang, Y.
    Parmentier, M.
    COMPUTATIONAL GEOSCIENCES, 2015, 19 (04) : 965 - 978
  • [48] hp-discontinuous Galerkin time-stepping for Volterra integrodifferential equations
    Brunner, H
    Schötzau, D
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2006, 44 (01) : 224 - 245
  • [49] OPTIMIZED SCHWARZ WAVEFORM RELAXATION AND DISCONTINUOUS GALERKIN TIME STEPPING FOR HETEROGENEOUS PROBLEMS
    Halpern, Laurence
    Japhet, Caroline
    Szeftel, Jeremie
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2012, 50 (05) : 2588 - 2611
  • [50] EFFICIENT EXPLICIT TIME STEPPING OF HIGH ORDER DISCONTINUOUS GALERKIN SCHEMES FOR WAVES
    Schoeder, S.
    Kormann, K.
    Wall, W. A.
    Kronbichler, M.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2018, 40 (06): : C803 - C826