Error profile for discontinuous Galerkin time stepping of parabolic PDEs

被引:0
|
作者
McLean, William [1 ]
Mustapha, Kassem [1 ]
机构
[1] Univ New South Wales, Sch Math & Stat, Kensington, NSW 2052, Australia
关键词
Superconvergence; Post-processing; Gauss-Radau quadrature; Legendre polynomials; DISCRETIZATION; ORDER;
D O I
10.1007/s11075-022-01410-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the time discretization of a linear parabolic problem by the discontinuous Galerkin (DG) method using piecewise polynomials of degree at most r -1 in t, for r >= 1 and with maximum step size k. It is well known that the spatial L-2-norm of the DG error is of optimal order k(r) globally in time, and is, for r >= 2, superconvergent of order k(2r-1) at the nodes. We show that on the nth subinterval (t(n-1),t(n)), the dominant term in the DG error is proportional to the local right Radau polynomial of degree r. This error profile implies that the DG error is of order k(r+1) at the right-hand Gauss-Radau quadrature points in each interval. We show that the norm of the jump in the DG solution at the left end point t(n-1) provides an accurate a posteriori estimate for the maximum error over the subinterval (t(n-1),t(n)). Furthermore, a simple post-processing step yields a continuous piecewise polynomial of degree r with the optimal global convergence rate of order k(r+1). We illustrate these results with some numerical experiments.
引用
收藏
页码:157 / 177
页数:21
相关论文
共 50 条
  • [21] A POSTERIORI ERROR ESTIMATES OF THE DISCONTINUOUS GALERKIN METHOD FOR PARABOLIC PROBLEM
    Sebestova, Ivana
    Dolejsi, Vit
    PROGRAMS AND ALGORITHMS OF NUMERICAL MATHEMATICS 15, 2010, : 158 - 163
  • [22] Error estimates for discontinuous Galerkin method for nonlinear parabolic equations
    Ohm, MR
    Lee, HY
    Shin, JY
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 315 (01) : 132 - 143
  • [23] Time-discretised galerkin approximations of parabolic stochastic PDES
    Grecksch, W
    Kloeden, PE
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1996, 54 (01) : 79 - 85
  • [24] THE VARIABLE-ORDER DISCONTINUOUS GALERKIN TIME STEPPING SCHEME FOR PARABOLIC EVOLUTION PROBLEMS IS UNIFORMLY L∞-STABLE
    Schmutz, Lars
    Wihler, Thomas P.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2019, 57 (01) : 293 - 319
  • [25] TIME DISCRETIZATION OF PARABOLIC PROBLEMS BY THE DISCONTINUOUS GALERKIN METHOD
    ERIKSSON, K
    JOHNSON, C
    THOMEE, V
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1985, 19 (04): : 611 - 643
  • [26] Discontinuous Galerkin Methods and Local Time Stepping for Wave Propagation
    Grote, M. J.
    Mitkova, T.
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS I-III, 2010, 1281 : 2119 - 2122
  • [27] Local Time-Stepping for Explicit Discontinuous Galerkin Schemes
    Gassner, Gregor
    Dumbser, Michael
    Hindenlang, Florian
    Munz, Claus-Dieter
    COMPUTATIONAL FLUID DYNAMICS 2010, 2011, : 171 - 177
  • [28] Discontinuous Galerkin Methods and Local Time Stepping for Wave Propagation
    Grote, M. J.
    Mitkova, T.
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS I-III, 2010, 1281 : 320 - 323
  • [29] Galerkin time-stepping methods for nonlinear parabolic equations
    Akrivis, G
    Makridakis, C
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2004, 38 (02): : 261 - 289
  • [30] Unified error analysis of discontinuous Galerkin methods for parabolic obstacle problem
    Papri Majumder
    Applications of Mathematics, 2021, 66 : 673 - 699