Assessing the drought impact on sugarcane yield based on crop water requirements and standardized precipitation evapotranspiration index

被引:24
|
作者
Qin, Nianxiu [1 ,2 ]
Lu, Qinqin [1 ,3 ,4 ]
Fu, Guobin [5 ]
Wang, Junneng [1 ,2 ]
Fei, Kai [3 ,4 ]
Gao, Liang [3 ,4 ]
机构
[1] Nanning Normal Univ, Nanning, Peoples R China
[2] Nanning Normal Univ, Lab Beibu Gulf Environm Change & Resources Use, Minist Educ, Nanning, Peoples R China
[3] Univ Macau, State Key Lab Internet Things Smart City, Taipa, Macao, Peoples R China
[4] Univ Macau, Dept Civil & Environm Engn, Taipa, Macao, Peoples R China
[5] CSIRO Land & Water, Private Bag 5, Wembley, WA 6913, Australia
基金
中国国家自然科学基金;
关键词
Drought; SPEI; Crop water requirement; Irrigation water requirements; Yield; SOUTHWEST CHINA; AGRICULTURAL DROUGHT; CLIMATE-CHANGE; RISK-ASSESSMENT; IRRIGATION; STRESS; PRODUCTIVITY; VARIABILITY; PERFORMANCE; EVOLUTION;
D O I
10.1016/j.agwat.2022.108037
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
A clear understanding of the drought impact on crops is essential to reduce drought-related yield losses. In this study, a framework to explicitly quantify the impact of drought on a specific crop has been proposed. The sugarcane is selected as the target crop, and the growth process is divided into 4 stages in different areas in Guangxi. The evolution of drought and water requirements, as well as the impact of drought on water requirement and yield are evaluated based on Standardized Precipitation Evapotranspiration Index (SPEI), Crop Water Requirement, and sugarcane Standardized Yield Residual Series. The drought in sugarcane growing season tends to intensify, and the drought risk in Southwest Guangxi will increase. Nevertheless, different drought trends exhibit in different growth stages. During the sugarcane seeding and tillering stages, the drought trend in Guangxi is dominant. Consistent with the detected trend of increasing drought, the water demand of sugarcane in most areas showed a significant upward trend. Crop Water Requirement and irrigation water requirement reached the maximum at the stem extension stage. The relationship between drought and irrigation water requirement varied in different regions. Sugarcane is vulnerable to drought risk during stem extension stage, resulting in a decline in yield, and the water demand at this stage is also the largest. The fluctuation of sugarcane yield can be explained by the interannual variation of SPEI. Specifically, the mid-to short-term drought in August and September have a significant impact on sugarcane production. Short-term SPEI can predict the occurrences of drought events earlier than long-term SPEI, and the fluctuation range is also greater. The severe and long-lasting drought has a serious impact on sugarcane yield. The method is expected to be applied to other crops in other regions.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] CMIP5 drought projections in Canada based on the Standardized Precipitation Evapotranspiration Index
    Tam, Benita Y.
    Szeto, Kit
    Bonsal, Barrie
    Flato, Greg
    Cannon, Alex J.
    Rong, Robin
    CANADIAN WATER RESOURCES JOURNAL, 2019, 44 (01) : 90 - 107
  • [22] A new copula-based standardized precipitation evapotranspiration streamflow index for drought monitoring
    Wang, Fei
    Wang, Zongmin
    Yang, Haibo
    Di, Danyang
    Zhao, Yong
    Liang, Qiuhua
    JOURNAL OF HYDROLOGY, 2020, 585
  • [23] Drought detection in Java']Java Island based on Standardized Precipitation and Evapotranspiration Index (SPEI)
    Suroso
    Nadhilah, Dede
    Ardiansyah
    Aldrian, Edvin
    JOURNAL OF WATER AND CLIMATE CHANGE, 2021, 12 (06) : 2734 - 2752
  • [24] Analyzing the impact of drought on agriculture: evidence from Pakistan using standardized precipitation evapotranspiration index
    Anwar Hussain
    Khan Zaib Jadoon
    Khalil Ur Rahman
    Songhao Shang
    Muhammad Shahid
    Nuaman Ejaz
    Himayatullah Khan
    Natural Hazards, 2023, 115 : 389 - 408
  • [25] Analyzing the impact of drought on agriculture: evidence from Pakistan using standardized precipitation evapotranspiration index
    Hussain, Anwar
    Jadoon, Khan Zaib
    Rahman, Khalil Ur
    Shang, Songhao
    Shahid, Muhammad
    Ejaz, Nuaman
    Khan, Himayatullah
    NATURAL HAZARDS, 2023, 115 (01) : 389 - 408
  • [26] Spatiotemporal drought analysis by the standardized precipitation index (SPI) and standardized precipitation evapotranspiration index (SPEI) in Sichuan Province, China
    Liu, Changhong
    Yang, Cuiping
    Yang, Qi
    Wang, Jiao
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [27] Spatiotemporal drought analysis by the standardized precipitation index (SPI) and standardized precipitation evapotranspiration index (SPEI) in Sichuan Province, China
    Changhong Liu
    Cuiping Yang
    Qi Yang
    Jiao Wang
    Scientific Reports, 11
  • [28] Weighing temporal fluctuations of drought features in Rwanda through the implementation of the standardized precipitation evapotranspiration index and standardized precipitation index
    Jonah, Kazora
    Zhu, Weijun
    Oo Than, Kyaw
    Asfaw, Temesgen Gebremariam
    Kedjanyi, Emmanuel Adu Gyamfi
    Okrah, Abraham
    Diane, Akimana
    Mugunga, Mathieu Mbati
    ENVIRONMENTAL RESEARCH COMMUNICATIONS, 2025, 7 (01):
  • [29] Drought monitoring in Croatia using the standardized precipitation-evapotranspiration index
    Loncar-Petrinjak, Ivan
    Pasaric, Zoran
    Kalin, Ksenija Cindric
    GEOFIZIKA, 2024, 41 (01) : 1 - 23
  • [30] Assessing the sensitivity of standardized precipitation evapotranspiration index to three potential evapotranspiration models in Nigeria
    Ogunrinde, Akinwale T.
    Olasehinde, David A.
    Olotu, Yahaya
    SCIENTIFIC AFRICAN, 2020, 8