ON SOBOLEV ORTHOGONAL POLYNOMIALS ON A TRIANGLE

被引:1
|
作者
Marriaga, Misael E. [1 ]
机构
[1] Univ Rey Juan Carlos, Dept Matemat Aplicada Ciencia & Ingn Mat & Tecnol, Madrid, Spain
关键词
APPROXIMATION; SPACES;
D O I
10.1090/proc/16142
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We use the invariance of the triangle T-2 = {(x, y) is an element of R-2 : 0 <= x, y, 1-x-y} under the permutations of {x, y, 1-x-y} to construct and study two-variable orthogonal polynomial systems with respect to several distinct Sobolev inner products defined on T2. These orthogonal polynomials can be constructed from two sequences of univariate orthogonal polynomials. In particular, one of the two univariate sequences of polynomials is orthogonal with respect to a Sobolev inner product and the other is a sequence of classical Jacobi polynomials.
引用
收藏
页码:679 / 691
页数:13
相关论文
共 50 条
  • [41] Asymptotics for Sobolev Orthogonal Polynomials for Exponential Weights
    J. S. Geronimo
    D. S. Lubinsky
    F. Marcellan
    Constructive Approximation , 2005, 22 : 309 - 346
  • [42] The semiclassical Sobolev orthogonal polynomials A general approach
    Costas-Santos, R. S.
    Moreno-Balcazar, J. J.
    JOURNAL OF APPROXIMATION THEORY, 2011, 163 (01) : 65 - 83
  • [43] Classical Sobolev Orthogonal Polynomials: Eigenvalue Problem
    Juan F. Mañas-Mañas
    Juan J. Moreno-Balcázar
    Results in Mathematics, 2019, 74
  • [44] On multipliers for Fourier series in Sobolev orthogonal polynomials
    Osilenker, Boris P.
    SBORNIK MATHEMATICS, 2022, 213 (08) : 1058 - 1095
  • [45] On some classical type Sobolev orthogonal polynomials
    Zagorodnyuk, Sergey M.
    JOURNAL OF APPROXIMATION THEORY, 2020, 250
  • [46] On Laguerre-Sobolev matrix orthogonal polynomials
    Fuentes, Edinson
    Garza, Luis E.
    Saiz, Martha L.
    OPEN MATHEMATICS, 2024, 22 (01):
  • [47] Orthogonal polynomials associated with a Δ-Sobolev inner product
    De Morales, MA
    Pérez, TE
    Piñar, MA
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2002, 8 (02) : 125 - 151
  • [48] Analytic aspects of Sobolev orthogonal polynomials revisited
    Martínez-Finkelshtein, A
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2001, 127 (1-2) : 255 - 266
  • [49] Krein-Sobolev Orthogonal Polynomials II
    Jones, Alexander
    Littlejohn, Lance
    Roba, Alejandro Quintero
    AXIOMS, 2025, 14 (02)
  • [50] Nondiagonal Hermite-Sobolev orthogonal polynomials
    de Morales, MA
    Moreno-Balcázar, JJ
    Pérez, TE
    Piñar, MA
    ACTA APPLICANDAE MATHEMATICAE, 2000, 61 (1-3) : 257 - 266