ON SOBOLEV ORTHOGONAL POLYNOMIALS ON A TRIANGLE

被引:1
|
作者
Marriaga, Misael E. [1 ]
机构
[1] Univ Rey Juan Carlos, Dept Matemat Aplicada Ciencia & Ingn Mat & Tecnol, Madrid, Spain
关键词
APPROXIMATION; SPACES;
D O I
10.1090/proc/16142
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We use the invariance of the triangle T-2 = {(x, y) is an element of R-2 : 0 <= x, y, 1-x-y} under the permutations of {x, y, 1-x-y} to construct and study two-variable orthogonal polynomial systems with respect to several distinct Sobolev inner products defined on T2. These orthogonal polynomials can be constructed from two sequences of univariate orthogonal polynomials. In particular, one of the two univariate sequences of polynomials is orthogonal with respect to a Sobolev inner product and the other is a sequence of classical Jacobi polynomials.
引用
收藏
页码:679 / 691
页数:13
相关论文
共 50 条
  • [21] Strong asymptotics for Sobolev orthogonal polynomials
    Finkelshtein, AM
    Cabrera, HP
    JOURNAL D ANALYSE MATHEMATIQUE, 1999, 78 (1): : 143 - 156
  • [22] Asymptotic properties of Sobolev orthogonal polynomials
    Martinez-Finkelshtein, A
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1998, 99 (1-2) : 491 - 510
  • [23] RECURRENCE RELATIONS FOR SOBOLEV ORTHOGONAL POLYNOMIALS
    Sultanakhmedov, M. S.
    PROBLEMY ANALIZA-ISSUES OF ANALYSIS, 2020, 9 (02): : 97 - 118
  • [24] Nondiagonal Hermite–Sobolev Orthogonal Polynomials
    María Álvarez de Morales
    Juan J. Moreno–Balcázar
    Teresa E. Pérez
    Miguel A. Piñar
    Acta Applicandae Mathematica, 2000, 61 : 257 - 266
  • [25] On Recurrence Relations for Sobolev Orthogonal Polynomials
    Evans, W. D.
    Littlejohn, L. L.
    Marcellan, F.
    Markett, C.
    SIAM News, 1995, 26 (02):
  • [26] Laguerre-Sobolev orthogonal polynomials
    Marcellan, F
    Perez, TE
    Pinar, MA
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1996, 71 (02) : 245 - 265
  • [27] COMPUTING ORTHOGONAL POLYNOMIALS IN SOBOLEV SPACES
    GAUTSCHI, W
    ZHANG, MD
    NUMERISCHE MATHEMATIK, 1995, 71 (02) : 159 - 183
  • [28] GENERALIZED WEIGHTED SOBOLEV SPACES AND APPLICATIONS TO SOBOLEV ORTHOGONAL POLYNOMIALS Ⅱ
    JoséM.Rodriguez
    ElenaRomeraandDomingoPestana
    VenancioAlvarez
    ApproximationTheoryandItsApplications, 2002, (02) : 1 - 32
  • [29] Zeros of Sobolev orthogonal polynomials of Hermite type
    de Bruin, MG
    Groenevelt, WGM
    Meijer, HG
    APPLIED MATHEMATICS AND COMPUTATION, 2002, 132 (01) : 135 - 166
  • [30] APPROXIMATION RESULTS FOR ORTHOGONAL POLYNOMIALS IN SOBOLEV SPACES
    CANUTO, C
    QUARTERONI, A
    MATHEMATICS OF COMPUTATION, 1982, 38 (157) : 67 - 86