ON SOBOLEV ORTHOGONAL POLYNOMIALS ON A TRIANGLE

被引:1
|
作者
Marriaga, Misael E. [1 ]
机构
[1] Univ Rey Juan Carlos, Dept Matemat Aplicada Ciencia & Ingn Mat & Tecnol, Madrid, Spain
关键词
APPROXIMATION; SPACES;
D O I
10.1090/proc/16142
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We use the invariance of the triangle T-2 = {(x, y) is an element of R-2 : 0 <= x, y, 1-x-y} under the permutations of {x, y, 1-x-y} to construct and study two-variable orthogonal polynomial systems with respect to several distinct Sobolev inner products defined on T2. These orthogonal polynomials can be constructed from two sequences of univariate orthogonal polynomials. In particular, one of the two univariate sequences of polynomials is orthogonal with respect to a Sobolev inner product and the other is a sequence of classical Jacobi polynomials.
引用
收藏
页码:679 / 691
页数:13
相关论文
共 50 条
  • [1] A study on Sobolev orthogonal polynomials on a triangle
    Karaman, Rabia Aktas
    Lekesiz, Esra Guldogan
    Aygar, Yelda
    NUMERICAL ALGORITHMS, 2023, 97 (2) : 915 - 944
  • [2] On Sobolev orthogonal polynomials
    Marcellan, Francisco
    Xu, Yuan
    EXPOSITIONES MATHEMATICAE, 2015, 33 (03) : 308 - 352
  • [3] Orthogonal Polynomials Associated with Related Measures and Sobolev Orthogonal Polynomials
    A.C. Berti
    C.F. Bracciali
    A. Sri Ranga
    Numerical Algorithms, 2003, 34 : 203 - 216
  • [4] Orthogonal polynomials associated with related measures and Sobolev orthogonal polynomials
    Berti, AC
    Bracciali, CF
    Ranga, AS
    NUMERICAL ALGORITHMS, 2003, 34 (2-4) : 203 - 216
  • [5] On generating Sobolev orthogonal polynomials
    Van Buggenhout, Niel
    NUMERISCHE MATHEMATIK, 2023, 155 (3-4) : 415 - 443
  • [6] Sobolev Orthogonal Polynomials on a Simplex
    Aktas, Rabia
    Xu, Yuan
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2013, 2013 (13) : 3087 - 3131
  • [7] General Sobolev orthogonal polynomials
    Marcellan, F
    Perez, TE
    Pinar, MA
    Ronveaux, A
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1996, 200 (03) : 614 - 634
  • [8] Sobolev Orthogonal Polynomials Generated by Meixner Polynomials
    Sharapudinov, I. I.
    Gadzhieva, Z. D.
    IZVESTIYA SARATOVSKOGO UNIVERSITETA NOVAYA SERIYA-MATEMATIKA MEKHANIKA INFORMATIKA, 2016, 16 (03): : 310 - 321
  • [9] Polynomials orthogonal in the Sobolev sense, generated by Chebyshev polynomials orthogonal on a mesh
    Sharapudinov I.I.
    Sharapudinov T.I.
    Russian Mathematics, 2017, 61 (8) : 59 - 70
  • [10] Strong asymptotics for Sobolev orthogonal polynomials
    Andrei Martínez Finkelshtein
    Héctor Pijeira Cabrera
    Journal d’Analyse Mathématique, 1999, 78 : 143 - 156