An Electromagnetic-Piezoelectric Hybrid Harvester Based on Magnetic Circuit Switch for Vibration Energy Harvesting

被引:3
|
作者
Gao, Xiang [1 ,2 ]
Cui, Juan [1 ,3 ]
Zheng, Yongqiu [1 ]
Li, Gang [1 ]
Hao, Congcong [1 ]
Xue, Chenyang [1 ]
机构
[1] North Univ China, Minist Educ, Key Lab Instrumentat Sci & Dynam Measurement, Taiyuan 030051, Peoples R China
[2] Jinzhong Univ, Minist Educ, Dept Mech, Jinzhong 030619, Peoples R China
[3] Xi An Jiao Tong Univ, Minist Educ, State Key Lab Mfg Syst Engn, Xian 710049, Peoples R China
关键词
Energy harvesting; magnetic circuit switch; cantilever beam; magnetic flux; LOW-FREQUENCY; CANTILEVER; CONVERSION; GENERATOR; INTERNET; DRIVEN;
D O I
10.1109/ACCESS.2023.3289004
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Energy harvesting technologies are contributing to the development of the Internet of Things. These techniques can provide continuous, energy-efficient and environmentally friendly power supplies and reduce manual maintenance requirements, and thus have strong prospects for sensing and monitoring applications, particularly in certain harsh working environments. The proposed electromagnetic-piezoelectric hybrid harvester contains both electromagnetic generator (EMG) and piezoelectric generator (PEG). Through vibration of the cantilever beam, the magnetic circuit in the soft-magnetic material is both connected and disconnected, and this can cause the magnetic flux in the coil to change dramatically, resulting in induction of a large voltage in the coil. This paper illustrates the feasibility and the optimal characteristics of the proposed hybrid harvester using theoretical verification and simulations, and demonstrates the factors that affect the power generation effect through testing. The study found that the maximum open-circuit voltages of the EMG and the PEG are 16 V and 42 V and the maximum peak powers of the EMG and the PEG reach 20 mW and 35 mW, respectively. The proposed energy harvester offers advantages in terms of both peak voltage and peak power, and provides a new method and concept for the vibration energy harvesting field.
引用
收藏
页码:65075 / 65083
页数:9
相关论文
共 50 条
  • [41] Vibration Energy Harvesting Using Piezoelectric Elements by Multi-switch Circuit with Adaptive Inductance
    Hatam, Salar
    Mohammadi, Saber
    Khodayari, Akram
    INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2021, 19 (11) : 3657 - 3665
  • [42] A low-frequency piezoelectric-electromagnetic-triboelectric hybrid broadband vibration energy harvester
    He, Xianming
    Wen, Quan
    Sun, Yafeng
    Wen, Zhiyu
    NANO ENERGY, 2017, 40 : 300 - 307
  • [43] Parametric Analysis and Experimental Verification of a Hybrid Vibration Energy Harvester Combining Piezoelectric and Electromagnetic Mechanisms
    Xu, Zhenlong
    Shan, Xiaobiao
    Yang, Hong
    Wang, Wen
    Xie, Tao
    MICROMACHINES, 2017, 8 (06):
  • [44] Modelling and Optimization of a Magnetic Spring Based Electromagnetic Vibration Energy Harvester
    Liao, Haojun
    Ye, Tingcong
    Pang, Yu
    Feeney, Ciaran
    Liu, Lei
    Zhang, Zhengmin
    Saha, Chitta
    Wang, Ningning
    JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY, 2022, 17 (01) : 463 - 474
  • [45] A floating piezoelectric electromagnetic hybrid wave vibration energy harvester actuated by a rotating wobble ball
    Shi, Ge
    Zeng, Wentao
    Xia, Yinshui
    Xa, Jubing
    Jin, Shengyou
    Li, Qing
    Wang, Xiudeng
    Xia, Huakang
    Ye, Yidie
    ENERGY, 2023, 270
  • [46] Modelling and Optimization of a Magnetic Spring Based Electromagnetic Vibration Energy Harvester
    Haojun Liao
    Tingcong Ye
    Yu Pang
    Ciaran Feeney
    Lei Liu
    Zhengmin Zhang
    Chitta Saha
    Ningning Wang
    Journal of Electrical Engineering & Technology, 2022, 17 : 463 - 474
  • [47] Design of a multi-direction piezoelectric and electromagnetic hybrid energy harvester used for ocean wave energy harvesting
    Chen, Liang
    Li, Chong
    Fang, Jiwen
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2023, 94 (12):
  • [48] A piezoelectric-electromagnetic hybrid energy harvester for rotational motion driven by magnetic repulsion
    Wang, Chensheng
    Lv, Xingqian
    Liu, Zhenxin
    Li, Xiaotao
    Yang, Bowen
    He, Lipeng
    SMART MATERIALS AND STRUCTURES, 2024, 33 (09)
  • [49] A Low-Power High-Efficiency Adaptive Energy Harvesting Circuit for Broadband Piezoelectric Vibration Energy Harvester
    Zou, Aicheng
    Liu, Zhong
    Han, Xingguo
    ACTUATORS, 2021, 10 (12)
  • [50] On the interaction between the harvesting structure and the storage circuit of a piezoelectric energy harvester
    Hu, Yuantai
    Hu, Ting
    Jiang, Qing
    INTERNATIONAL JOURNAL OF APPLIED ELECTROMAGNETICS AND MECHANICS, 2008, 27 (04) : 297 - 309