An Electromagnetic-Piezoelectric Hybrid Harvester Based on Magnetic Circuit Switch for Vibration Energy Harvesting

被引:3
|
作者
Gao, Xiang [1 ,2 ]
Cui, Juan [1 ,3 ]
Zheng, Yongqiu [1 ]
Li, Gang [1 ]
Hao, Congcong [1 ]
Xue, Chenyang [1 ]
机构
[1] North Univ China, Minist Educ, Key Lab Instrumentat Sci & Dynam Measurement, Taiyuan 030051, Peoples R China
[2] Jinzhong Univ, Minist Educ, Dept Mech, Jinzhong 030619, Peoples R China
[3] Xi An Jiao Tong Univ, Minist Educ, State Key Lab Mfg Syst Engn, Xian 710049, Peoples R China
关键词
Energy harvesting; magnetic circuit switch; cantilever beam; magnetic flux; LOW-FREQUENCY; CANTILEVER; CONVERSION; GENERATOR; INTERNET; DRIVEN;
D O I
10.1109/ACCESS.2023.3289004
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Energy harvesting technologies are contributing to the development of the Internet of Things. These techniques can provide continuous, energy-efficient and environmentally friendly power supplies and reduce manual maintenance requirements, and thus have strong prospects for sensing and monitoring applications, particularly in certain harsh working environments. The proposed electromagnetic-piezoelectric hybrid harvester contains both electromagnetic generator (EMG) and piezoelectric generator (PEG). Through vibration of the cantilever beam, the magnetic circuit in the soft-magnetic material is both connected and disconnected, and this can cause the magnetic flux in the coil to change dramatically, resulting in induction of a large voltage in the coil. This paper illustrates the feasibility and the optimal characteristics of the proposed hybrid harvester using theoretical verification and simulations, and demonstrates the factors that affect the power generation effect through testing. The study found that the maximum open-circuit voltages of the EMG and the PEG are 16 V and 42 V and the maximum peak powers of the EMG and the PEG reach 20 mW and 35 mW, respectively. The proposed energy harvester offers advantages in terms of both peak voltage and peak power, and provides a new method and concept for the vibration energy harvesting field.
引用
收藏
页码:65075 / 65083
页数:9
相关论文
共 50 条
  • [21] Theoretical and experimental studies on piezoelectric-electromagnetic hybrid vibration energy harvester
    Deng, Licheng
    Wen, Zhiyu
    Zhao, Xingqiang
    MICROSYSTEM TECHNOLOGIES-MICRO-AND NANOSYSTEMS-INFORMATION STORAGE AND PROCESSING SYSTEMS, 2017, 23 (04): : 935 - 943
  • [22] A multi-directional broadband piezoelectric-electromagnetic-magnetic coupling compound energy harvester for vibration energy harvesting applications
    Gao, Mingming
    Zhu, Yongqiang
    Li, Donglin
    Liu, Hao
    Guo, Qiang
    SMART MATERIALS AND STRUCTURES, 2024, 33 (01)
  • [23] A Hybrid Piezoelectric and Electrostatic Vibration Energy Harvester
    Madinei, H.
    Khodaparast, H. Haddad
    Adhikari, S.
    Friswell, M. I.
    SHOCK & VIBRATION, AIRCRAFT/AEROSPACE, ENERGY HARVESTING, ACOUSTICS & OPTICS, VOL 9, 2016, : 189 - 195
  • [24] An annular tubular wearable piezoelectric-electromagnetic hybrid vibration energy harvester driven by multi magnetic beads
    Shi, Ge
    Xu, Jubing
    Xia, Yinshui
    Zeng, Wentao
    Jia, Shengyao
    Li, Qing
    Wang, Xiudeng
    Xia, Huakang
    Ye, Yidie
    ENERGY CONVERSION AND MANAGEMENT, 2022, 269
  • [25] A Novel Model of Piezoelectric-Electromagnetic Hybrid Energy Harvester Based on Vortex-induced Vibration
    Zhao, Linchao
    Zhang, Hang
    Su, Fan
    Yin, Zhongjun
    2017 INTERNATIONAL CONFERENCE ON GREEN ENERGY AND APPLICATIONS (ICGEA 2017), 2017, : 105 - 108
  • [26] Performance of beam-type piezoelectric vibration energy harvester based on ZnO film fabrication and improved energy harvesting circuit
    Gao, Shan
    Zhang, Chong-Yang
    Ao, Hong-Rui
    Jiang, Hong-Yuan
    CHINESE PHYSICS B, 2020, 29 (08)
  • [27] Performance of beam-type piezoelectric vibration energy harvester based on ZnO film fabrication and improved energy harvesting circuit
    高珊
    张重扬
    敖宏瑞
    姜洪源
    Chinese Physics B, 2020, (08) : 590 - 598
  • [28] Experimental and theoretical analysis of a hybrid vibration energy harvester with integrated piezoelectric and electromagnetic interaction
    Huang, Shifan
    Luo, Weihao
    Zhu, Zongming
    Xu, Zhenlong
    Wang, Ban
    Zhou, Maoying
    Qin, Huawei
    JOURNAL OF ZHEJIANG UNIVERSITY-SCIENCE A, 2023, 24 (11): : 991 - 1002
  • [29] Theoretical analysis and experimental research of piezoelectric-electromagnetic hybrid vibration energy harvester
    Zhang, Xuhui
    Cheng, Yujun
    Yang, Wenjuan
    Pan, Jianan
    Chen, Xiaoyu
    Xu, Hengtao
    Tian, Hao
    Zhang, Jialin
    SMART MATERIALS AND STRUCTURES, 2024, 33 (09)
  • [30] A synchronous piezoelectric-triboelectric-electromagnetic hybrid generator for harvesting vibration energy
    Singh, Huidrom Hemojit
    Kumar, Dheeraj
    Khare, Neeraj
    SUSTAINABLE ENERGY & FUELS, 2021, 5 (01) : 212 - 218