Local uniqueness of multi-peak solutions to a class of Schrodinger equations with competing potential

被引:0
|
作者
Niu, Yahui [1 ]
Tian, Shuying [2 ]
Yang, Pingping [3 ]
机构
[1] Zhengzhou Univ, Sch Math & Stat, Zhengzhou 450003, Peoples R China
[2] Sch Sci Wuhan Univ Technol, Dept Math, Wuhan 430070, Peoples R China
[3] Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Peoples R China
关键词
SEMICLASSICAL BOUND-STATES; POSITIVE SOLUTIONS; EXISTENCE; BUMP;
D O I
10.1063/5.0134220
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we consider the nonlinear Schrodinger equations. Let A(x) := [V(x)](p/p-2 - N2) [K(x)](- 2/p-2). Under some conditions on A, we show the local uniqueness of positive multi-peak solutions concentrating near k(k >= 2) distinct non-degenerate critical points of A by using the local Pohozaev identity. We generalize Cao-Li-Luo's results to the competing potential cases and show how these two potentials impact the uniqueness of concentrated solutions.
引用
收藏
页数:16
相关论文
共 50 条