Local uniqueness of multi-peak solutions to a class of Schrodinger equations with competing potential

被引:0
|
作者
Niu, Yahui [1 ]
Tian, Shuying [2 ]
Yang, Pingping [3 ]
机构
[1] Zhengzhou Univ, Sch Math & Stat, Zhengzhou 450003, Peoples R China
[2] Sch Sci Wuhan Univ Technol, Dept Math, Wuhan 430070, Peoples R China
[3] Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Peoples R China
关键词
SEMICLASSICAL BOUND-STATES; POSITIVE SOLUTIONS; EXISTENCE; BUMP;
D O I
10.1063/5.0134220
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we consider the nonlinear Schrodinger equations. Let A(x) := [V(x)](p/p-2 - N2) [K(x)](- 2/p-2). Under some conditions on A, we show the local uniqueness of positive multi-peak solutions concentrating near k(k >= 2) distinct non-degenerate critical points of A by using the local Pohozaev identity. We generalize Cao-Li-Luo's results to the competing potential cases and show how these two potentials impact the uniqueness of concentrated solutions.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Multi-peak solutions of a type of Kirchhoff equations with critical exponent
    Chen, Mengyao
    Li, Qi
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2021, 66 (08) : 1380 - 1398
  • [32] Multi-peak solutions for a wide class of singular perturbation problems
    Wei, JC
    Winter, M
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1999, 59 : 585 - 606
  • [33] EXISTENCE OF MULTI-PEAK SOLUTIONS FOR A CLASS OF QUASILINEAR PROBLEMS IN RN
    Alves, Claudianor O.
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2011, 38 (02) : 307 - 332
  • [34] Multi-peak bound states for Schrodinger equations with compactly supported or unbounded potentials
    Ba, Na
    Deng, Yinbin
    Peng, Shuangjie
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2010, 27 (05): : 1205 - 1226
  • [35] Multi-peak standing waves for nonlinear Schrodinger equations involving critical growth
    Zhang, Jianjun
    do O, Joao Marcos
    Yang, Minbo
    MATHEMATISCHE NACHRICHTEN, 2017, 290 (10) : 1588 - 1601
  • [36] Multi-peak Positive Solutions of a Nonlinear Schrodinger-Newton Type System
    Gheraibia, Billel
    Wang, Chunhua
    ADVANCED NONLINEAR STUDIES, 2020, 20 (01) : 53 - 75
  • [37] Non-degeneracy of multi-peak solutions for the Schrodinger-Poisson problem
    Chen, Lin
    Ding, Hui-Sheng
    Li, Benniao
    Ye, Jianghua
    ADVANCED NONLINEAR STUDIES, 2023, 23 (01)
  • [38] Multi-peak positive solutions for a logarithmic Schrodinger equation via variational methods
    Alves, Claudianor O.
    Ji, Chao
    ISRAEL JOURNAL OF MATHEMATICS, 2024, 259 (02) : 835 - 885
  • [39] Local uniqueness and the number of concentrated solutions for nonlinear Schrodinger equations with non-admissible potential
    Luo, Peng
    Tian, Shuying
    Zhou, Xiaodong
    NONLINEARITY, 2021, 34 (02) : 705 - 724
  • [40] Multi-peak semiclassical bound states for Fractional Schrodinger Equations with fast decaying potentials
    An, Xiaoming
    Peng, Shuangjie
    ELECTRONIC RESEARCH ARCHIVE, 2022, 30 (02): : 585 - 614