Statistical temporal pattern extraction by neuronal architecture

被引:0
|
作者
Nestler, Sandra [1 ,2 ,3 ,4 ]
Helias, Moritz [1 ,2 ,3 ,5 ]
Gilson, Matthieu [1 ,2 ,3 ,6 ]
机构
[1] Julich Res Ctr, Inst Neurosci & Med INM 6, D-52428 Julich, Germany
[2] Julich Res Ctr, Inst Adv Simulat IAS 6, D-52428 Julich, Germany
[3] Julich Res Ctr, JARA Inst Brain Struct Funct Relationships INM 10, D-52428 Julich, Germany
[4] Rhein Westfal TH Aachen, D-52062 Aachen, Germany
[5] Rhein Westfal TH Aachen, Fac 1, Dept Phys, D-52062 Aachen, Germany
[6] Inst Neurosci Syst INS, UMR1106, INSERM AMU, F-13005 Marseille, France
来源
PHYSICAL REVIEW RESEARCH | 2023年 / 5卷 / 03期
关键词
TIMING-DEPENDENT PLASTICITY; ACTIVATION FUNCTION; NEURAL-NETWORKS; MODEL; VARIABILITY; DYNAMICS; CLASSIFICATION; MECHANISMS; WAVES; RULE;
D O I
10.1103/PhysRevResearch.5.033177
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Neuronal systems need to process temporal signals. Here, we show how higher-order temporal (co)fluctuations can be employed to represent and process information. Concretely, we demonstrate that a simple biologically inspired feedforward neuronal model can extract information from up to the third-order cumulant to perform time series classification. This model relies on a weighted linear summation of synaptic inputs followed by a nonlinear gain function. Training both the synaptic weights and the nonlinear gain function exposes how the nonlinearity allows for the transfer of higher-order correlations to the mean, which in turn enables the synergistic use of information encoded in multiple cumulants to maximize the classification accuracy. The approach is demonstrated both on synthetic and real-world datasets of multivariate time series. Moreover, we show that the biologically inspired architecture makes better use of the number of trainable parameters than a classical machine-learning scheme. Our findings emphasize the benefit of biological neuronal architectures, paired with dedicated learning algorithms, for the processing of information embedded in higher-order statistical cumulants of temporal (co)fluctuations.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] Evaluating accuracies of a trading rule mining method based on temporal pattern extraction
    Abe, Hidenao
    Hirabayashi, Satoru
    Ohsaki, Miho
    Yamaguchi, Takahira
    MINING COMPLEX DATA, 2008, 4944 : 72 - +
  • [32] Mesoscopic neuronal activity and neuronal network architecture
    Shimono, Masanori
    Beggs, John M.
    NEUROSCIENCE RESEARCH, 2011, 71 : E304 - E304
  • [33] Face Spoofing Video Detection Using Spatio-Temporal Statistical Binary Pattern
    Zhang, Ying
    Dubey, Rohit Kumar
    Hua, Guang
    Thing, Vrizlynn. L. L.
    PROCEEDINGS OF TENCON 2018 - 2018 IEEE REGION 10 CONFERENCE, 2018, : 0309 - 0314
  • [34] PLATELETS - NEURONAL PATTERN
    DREUX, C
    GAZETTE MEDICALE, 1984, 91 (19): : 89 - 89
  • [35] Statistical pattern recognition for structural health monitoring using ESN feature extraction method
    Yang, Jianxi (yjx@cqjtu.edu.cn), 1600, Acta Press, Building B6, Suite 101, 2509 Dieppe Avenue S.W., Calgary, AB, T3E 7J9, Canada (33):
  • [36] Temporal pattern of neuronal insulin release during Caenorhabditis elegans aging: Role of redox homeostasis
    Minniti, Alicia N.
    Arriagada, Hector
    Zuniga, Soledad
    Bravo-Zehnder, Marcela
    Alfaro, Ivan E.
    Aldunate, Rebeca
    AGING CELL, 2019, 18 (01)
  • [37] A statistical pattern based feature extraction method on system call traces for anomaly detection
    Liu, Zhen
    Japkowicz, Nathalie
    Wang, Ruoyu
    Cai, Yongming
    Tang, Deyu
    Cai, Xianfa
    INFORMATION AND SOFTWARE TECHNOLOGY, 2020, 126 (126)
  • [38] STATISTICAL PATTERN RECOGNITION FOR STRUCTURAL HEALTH MONITORING USING ESN FEATURE EXTRACTION METHOD
    Yang, Jianxi
    Sha, Gaocen
    Zhou, Yingxin
    Wang, Guiping
    Zheng, Boren
    INTERNATIONAL JOURNAL OF ROBOTICS & AUTOMATION, 2018, 33 (06): : 569 - 576
  • [39] Temporal-spatial pattern of acute neuronal and glial loss after spinal cord contusion
    Grossman, SD
    Rosenberg, LJ
    Wrathall, JR
    EXPERIMENTAL NEUROLOGY, 2001, 168 (02) : 273 - 282
  • [40] Feature extraction and combinatorial representation of neuronal input pattern by Ca2+ signaling pathways
    Fujii, Hajime
    Inoue, Masatoshi
    Okuno, Hiroyuki
    Takemoto-Kimura, Sayaka
    Bito, Haruhiko
    NEUROSCIENCE RESEARCH, 2011, 71 : E116 - E116