Statistical temporal pattern extraction by neuronal architecture

被引:0
|
作者
Nestler, Sandra [1 ,2 ,3 ,4 ]
Helias, Moritz [1 ,2 ,3 ,5 ]
Gilson, Matthieu [1 ,2 ,3 ,6 ]
机构
[1] Julich Res Ctr, Inst Neurosci & Med INM 6, D-52428 Julich, Germany
[2] Julich Res Ctr, Inst Adv Simulat IAS 6, D-52428 Julich, Germany
[3] Julich Res Ctr, JARA Inst Brain Struct Funct Relationships INM 10, D-52428 Julich, Germany
[4] Rhein Westfal TH Aachen, D-52062 Aachen, Germany
[5] Rhein Westfal TH Aachen, Fac 1, Dept Phys, D-52062 Aachen, Germany
[6] Inst Neurosci Syst INS, UMR1106, INSERM AMU, F-13005 Marseille, France
来源
PHYSICAL REVIEW RESEARCH | 2023年 / 5卷 / 03期
关键词
TIMING-DEPENDENT PLASTICITY; ACTIVATION FUNCTION; NEURAL-NETWORKS; MODEL; VARIABILITY; DYNAMICS; CLASSIFICATION; MECHANISMS; WAVES; RULE;
D O I
10.1103/PhysRevResearch.5.033177
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Neuronal systems need to process temporal signals. Here, we show how higher-order temporal (co)fluctuations can be employed to represent and process information. Concretely, we demonstrate that a simple biologically inspired feedforward neuronal model can extract information from up to the third-order cumulant to perform time series classification. This model relies on a weighted linear summation of synaptic inputs followed by a nonlinear gain function. Training both the synaptic weights and the nonlinear gain function exposes how the nonlinearity allows for the transfer of higher-order correlations to the mean, which in turn enables the synergistic use of information encoded in multiple cumulants to maximize the classification accuracy. The approach is demonstrated both on synthetic and real-world datasets of multivariate time series. Moreover, we show that the biologically inspired architecture makes better use of the number of trainable parameters than a classical machine-learning scheme. Our findings emphasize the benefit of biological neuronal architectures, paired with dedicated learning algorithms, for the processing of information embedded in higher-order statistical cumulants of temporal (co)fluctuations.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] A Distributed Microservice Architecture Pattern for the Automated Generation of Information Extraction Pipelines
    Sildatke M.
    Karwanni H.
    Kraft B.
    Zündorf A.
    SN Computer Science, 4 (6)
  • [22] Spatio-Temporal Pattern and Trend Extraction on Turkish Meteorological Data
    Goler, Isil
    Senkul, Pinar
    Yazici, Adnan
    COMPUTER AND INFORMATION SCIENCES II, 2012, : 505 - 510
  • [23] MUTUAL TEMPORAL RELATIONSHIPS AMONG NEURONAL SPIKE TRAINS - STATISTICAL TECHNIQUES FOR DISPLAY AND ANALYSIS
    GERSTEIN, GL
    PERKEL, DH
    BIOPHYSICAL JOURNAL, 1972, 12 (05) : 453 - +
  • [24] Pattern Prediction in Infrastructured Wireless Networks: Directional vs Temporal Statistical Approach
    Fazio, Peppino
    Tropea, Mauro
    Marano, Salvatore
    Sottile, Cesare
    2013 IFIP WIRELESS DAYS (WD), 2013,
  • [25] An Incremental Statistical Method for Daily Activity Pattern Extraction and User Intention Inference
    Choi, Euri
    Nam, Yunyoung
    Kim, Bora
    Cho, Weduke
    KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS, 2009, 3 (03): : 219 - 234
  • [26] Statistical Features Extraction for Multivariate Pattern Analysis in Meditation EEG using PCA
    Shaw, Laxmi
    Routray, Aurobinda
    2016 IEEE EMBS INTERNATIONAL STUDENT CONFERENCE (ISC), 2016,
  • [27] Effects of the Temporal Pattern of Subthalamic Deep Brain Stimulation on the Neuronal Complexity in the Globus Pallidus
    Deng, Callie
    Sun, Tony
    Zhang, Manning
    Gale, John T.
    Montgomery, Erwin B., Jr.
    Santaniello, Sabato
    2017 39TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2017, : 3352 - 3355
  • [28] EXTRACTION OF TEMPORAL AND SPATIAL PROPERTIES ON HABITAT OF RIVER SNAIL BY MEANS OF STATISTICAL APPROACH
    Kondo, Masaaki
    INTERNATIONAL JOURNAL OF GEOMATE, 2019, 17 (62): : 125 - 132
  • [29] Unsupervised Maritime Traffic Pattern Extraction from Spatio-Temporal Data
    Sun, Fumin
    Deng, Yong
    Deng, Feng
    Zhu, Qingmeng
    Chu, Hanyue
    2015 11TH INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION (ICNC), 2015, : 1218 - 1223
  • [30] A Probabilistic Model with Commonsense Constraints for Pattern-based Temporal Fact Extraction
    Zhou, Yang
    Zhao, Tong
    Jiang, Meng
    FACT EXTRACTION AND VERIFICATION (FEVER), 2020, : 18 - 25