Computing Over the Sky: Joint UAV Trajectory and Task Offloading Scheme Based on Optimization-Embedding Multi-Agent Deep Reinforcement Learning

被引:8
|
作者
Li, Xuanheng [1 ]
Du, Xinyang [1 ]
Zhao, Nan [1 ]
Wang, Xianbin [2 ]
机构
[1] Dalian Univ Technol, Sch Informat & Commun Engn, Dalian 116024, Peoples R China
[2] Western Univ, Dept Elect & Comp Engn, London, ON N6A 5B9, Canada
基金
中国国家自然科学基金;
关键词
Autonomous aerial vehicles; Task analysis; Trajectory; Heuristic algorithms; Delays; Reinforcement learning; Resource management; Unmanned aerial vehicle; mobile edge computing; computation offloading; trajectory control; reinforcement learning; RESOURCE-ALLOCATION; ENERGY EFFICIENCY; ALGORITHM; NETWORKS; TIME;
D O I
10.1109/TCOMM.2023.3331029
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Unmanned aerial vehicle (UAV)-assisted mobile edge computing (MEC) has emerged to support computation-intensive tasks in 6G systems. Since the battery capacity of a UAV is limited, to serve as many users as possible, a joint design on UAV trajectory and offloading strategy with consideration for service fairness is essential to provide energy-efficient computation offloading to the users in UAV-MEC networks. Unfortunately, such a joint decision-making problem is not straightforward due to various task types required from users and various functionalities of different UAVs enabled by different application programs. Considering the above issues, we take energy efficiency and service fairness as the objective, and propose a Multi-Agent Energy-Efficient joint Trajectory and Computation Offloading (MA-ETCO) scheme. To adapt to dynamic demands of users, we develop an optimization-embedding multi-agent deep reinforcement learning (OMADRL) algorithm. Each UAV autonomously learns the trajectory control decision based on MADRL to adapt to dynamic demands. Then, it will obtain the optimal computation offloading decision by solving a mixed-integer nonlinear programming problem. The computation offloading result, in turn, will be used as an indicator to guide UAVs' trajectory design. Compared to relying solely on deep reinforcement learning, such an optimization-embedding way reduces action space dimension and improves convergence efficiency.
引用
收藏
页码:1355 / 1369
页数:15
相关论文
共 50 条
  • [41] A Task Offloading Strategy Based on Multi-Agent Deep Reinforcement Learning for Offshore Wind Farm Scenarios
    Song, Zeshuang
    Wang, Xiao
    Wu, Qing
    Tao, Yanting
    Xu, Linghua
    Yin, Yaohua
    Yan, Jianguo
    CMC-COMPUTERS MATERIALS & CONTINUA, 2024, 81 (01): : 985 - 1008
  • [42] UAV Swarm Confrontation Based on Multi-agent Deep Reinforcement Learning
    Wang, Zhi
    Liu, Fan
    Guo, Jing
    Hong, Chen
    Chen, Ming
    Wang, Ershen
    Zhao, Yunbo
    2022 41ST CHINESE CONTROL CONFERENCE (CCC), 2022, : 4996 - 5001
  • [43] Joint Task and Computing Resource Allocation in Distributed Edge Computing Systems via Multi-Agent Deep Reinforcement Learning
    Chen, Yan
    Sun, Yanjing
    Yu, Hao
    Taleb, Tarik
    IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2024, 11 (04): : 3479 - 3494
  • [44] Task Offloading and Trajectory Control for UAV-Assisted Mobile Edge Computing Using Deep Reinforcement Learning
    Zhang, Lu
    Zhang, Zi-Yan
    Min, Luo
    Tang, Chao
    Zhang, Hong-Ying
    Wang, Ya-Hong
    Cai, Peng
    IEEE ACCESS, 2021, 9 : 53708 - 53719
  • [45] Task Offloading for UAV-based Mobile Edge Computing via Deep Reinforcement Learning
    Li, Jun
    Liu, Qian
    Wu, Pingyang
    Shu, Feng
    Jin, Shi
    2018 IEEE/CIC INTERNATIONAL CONFERENCE ON COMMUNICATIONS IN CHINA (ICCC), 2018, : 798 - 802
  • [46] Joint Secure Offloading and Resource Allocation for Vehicular Edge Computing Network: A Multi-Agent Deep Reinforcement Learning Approach
    Ju, Ying
    Chen, Yuchao
    Cao, Zhiwei
    Liu, Lei
    Pei, Qingqi
    Xiao, Ming
    Ota, Kaoru
    Dong, Mianxiong
    Leung, Victor C. M.
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2023, 24 (05) : 5555 - 5569
  • [47] Multi-Agent Learning-Based Optimal Task Offloading and UAV Trajectory Planning for AGIN-Power IoT
    Qin, Peng
    Fu, Yang
    Xie, Yuanbo
    Wu, Kui
    Zhang, Xianchao
    Zhao, Xiongwen
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2023, 71 (07) : 4005 - 4017
  • [48] Efficient UAV/Satellite-assisted IoT Task Offloading: A Multi-agent Reinforcement Learning Solution
    Yu, Kangjia
    Cui, Qimei
    Zhang, Ziyuan
    Huang, Xueqing
    Zhang, Xuefei
    Tao, Xiaofeng
    2022 27TH ASIA PACIFIC CONFERENCE ON COMMUNICATIONS (APCC 2022): CREATING INNOVATIVE COMMUNICATION TECHNOLOGIES FOR POST-PANDEMIC ERA, 2022, : 83 - 88
  • [49] Joint Trajectory Optimization and Task Offloading for UAV-Assisted Mobile Edge Computing
    Wang, Yipeng
    Liu, Yiming
    Zhang, Jiaxiang
    Liu, Baoling
    2023 IEEE 34TH ANNUAL INTERNATIONAL SYMPOSIUM ON PERSONAL, INDOOR AND MOBILE RADIO COMMUNICATIONS, PIMRC, 2023,
  • [50] Joint UAV Deployment and Task Offloading Scheme for Multi-UAV-Assisted Edge Computing
    Li, Fan
    Luo, Juan
    Qiao, Ying
    Li, Yaqun
    DRONES, 2023, 7 (05)