Computing Over the Sky: Joint UAV Trajectory and Task Offloading Scheme Based on Optimization-Embedding Multi-Agent Deep Reinforcement Learning

被引:8
|
作者
Li, Xuanheng [1 ]
Du, Xinyang [1 ]
Zhao, Nan [1 ]
Wang, Xianbin [2 ]
机构
[1] Dalian Univ Technol, Sch Informat & Commun Engn, Dalian 116024, Peoples R China
[2] Western Univ, Dept Elect & Comp Engn, London, ON N6A 5B9, Canada
基金
中国国家自然科学基金;
关键词
Autonomous aerial vehicles; Task analysis; Trajectory; Heuristic algorithms; Delays; Reinforcement learning; Resource management; Unmanned aerial vehicle; mobile edge computing; computation offloading; trajectory control; reinforcement learning; RESOURCE-ALLOCATION; ENERGY EFFICIENCY; ALGORITHM; NETWORKS; TIME;
D O I
10.1109/TCOMM.2023.3331029
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Unmanned aerial vehicle (UAV)-assisted mobile edge computing (MEC) has emerged to support computation-intensive tasks in 6G systems. Since the battery capacity of a UAV is limited, to serve as many users as possible, a joint design on UAV trajectory and offloading strategy with consideration for service fairness is essential to provide energy-efficient computation offloading to the users in UAV-MEC networks. Unfortunately, such a joint decision-making problem is not straightforward due to various task types required from users and various functionalities of different UAVs enabled by different application programs. Considering the above issues, we take energy efficiency and service fairness as the objective, and propose a Multi-Agent Energy-Efficient joint Trajectory and Computation Offloading (MA-ETCO) scheme. To adapt to dynamic demands of users, we develop an optimization-embedding multi-agent deep reinforcement learning (OMADRL) algorithm. Each UAV autonomously learns the trajectory control decision based on MADRL to adapt to dynamic demands. Then, it will obtain the optimal computation offloading decision by solving a mixed-integer nonlinear programming problem. The computation offloading result, in turn, will be used as an indicator to guide UAVs' trajectory design. Compared to relying solely on deep reinforcement learning, such an optimization-embedding way reduces action space dimension and improves convergence efficiency.
引用
收藏
页码:1355 / 1369
页数:15
相关论文
共 50 条
  • [31] Many-to-Many Task Offloading in Vehicular Fog Computing: A Multi-Agent Deep Reinforcement Learning Approach
    Wei, Zhiwei
    Li, Bing
    Zhang, Rongqing
    Cheng, Xiang
    Yang, Liuqing
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2024, 23 (03) : 2107 - 2122
  • [32] A Task Offloading and Resource Allocation Strategy Based on Multi-Agent Reinforcement Learning in Mobile Edge Computing
    Jiang, Guiwen
    Huang, Rongxi
    Bao, Zhiming
    Wang, Gaocai
    FUTURE INTERNET, 2024, 16 (09)
  • [33] A Distributed Deep Reinforcement Learning-based Optimization Scheme for Vehicle Edge Computing Task Offloading
    Li, Bingxian
    Zhu, Lin
    Tan, Long
    PROCEEDINGS OF THE 2024 27 TH INTERNATIONAL CONFERENCE ON COMPUTER SUPPORTED COOPERATIVE WORK IN DESIGN, CSCWD 2024, 2024, : 218 - 223
  • [34] A joint task caching and computation offloading scheme based on deep reinforcement learning
    Tian, Huizi
    Zhu, Lin
    Tan, Long
    PEER-TO-PEER NETWORKING AND APPLICATIONS, 2025, 18 (01) : 26 - 26
  • [35] Multi-agent deep reinforcement learning for task offloading in group distributed manufacturing systems
    Xiong, Jianyu
    Guo, Peng
    Wang, Yi
    Meng, Xiangyin
    Zhang, Jian
    Qian, Linmao
    Yu, Zhenglin
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2023, 118
  • [36] Multi-Agent Deep Reinforcement Learning for Cooperative Computing Offloading and Route Optimization in Multi Cloud-Edge Networks
    Suzuki, Akito
    Kobayashi, Masahiro
    Oki, Eiji
    IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2023, 20 (04): : 4416 - 4434
  • [37] Multi-agent Deep Reinforcement Learning Aided Computing Offloading in LEO Satellite Networks
    Lai, Junyu
    Liu, Huashuo
    Sun, Yusong
    Tan, Huidong
    Gan, Lianqiang
    Chen, Zhiyong
    ICC 2023-IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, 2023, : 3438 - 3443
  • [38] Multi-Agent Deep Reinforcement Learning for Efficient Computation Offloading in Mobile Edge Computing
    Jiao, Tianzhe
    Feng, Xiaoyue
    Guo, Chaopeng
    Wang, Dongqi
    Song, Jie
    CMC-COMPUTERS MATERIALS & CONTINUA, 2023, 76 (03): : 3585 - 3603
  • [39] Multi-Agent Deep Reinforcement Learning for Cooperative Offloading in Cloud-Edge Computing
    Suzuki, Akito
    Kobayashi, Masahiro
    IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC 2022), 2022, : 3660 - 3666
  • [40] Task Offloading Optimization in Mobile Edge Computing based on Deep Reinforcement Learning
    Silva, Carlos
    Magaia, Naercio
    Grilo, Antonio
    PROCEEDINGS OF THE INT'L ACM CONFERENCE ON MODELING, ANALYSIS AND SIMULATION OF WIRELESS AND MOBILE SYSTEMS, MSWIM 2023, 2023, : 109 - 118