On Generalized Bivariate (p,q)-Bernoulli-Fibonacci Polynomials and Generalized Bivariate (p,q)-Bernoulli-Lucas Polynomials

被引:4
|
作者
Guan, Hao [1 ,2 ]
Khan, Waseem Ahmad [3 ]
Kizilates, Can [4 ]
机构
[1] Guangzhou Univ, Inst Comp Sci & Technol, Guangzhou 510006, Peoples R China
[2] Qiannan Normal Univ Nationalities, Sch Comp Sci Informat Technol, Duyun 558000, Peoples R China
[3] Prince Mohammad Bin Fahd Univ, Dept Math & Nat Sci, POB 1664, Al Khobar 31952, Saudi Arabia
[4] Zonguldak Bulent Ecevit Univ, Dept Math, TR-67100 Zonguldak, Turkiye
来源
SYMMETRY-BASEL | 2023年 / 15卷 / 04期
关键词
q-Bernoulli numbers; (p; q)-Bernoulli numbers; unified; q)-Bernoulli polynomials; h(x)-Fibonacci polynomials; generating functions; FIBONACCI;
D O I
10.3390/sym15040943
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Many properties of special polynomials, such as recurrence relations, sum formulas, and symmetric properties, have been studied in the literature with the help of generating functions and their functional equations. In this paper, we define the generalized (p,q)-Bernoulli-Fibonacci and generalized (p,q)-Bernoulli-Lucas polynomials and numbers by using the (p,q)-Bernoulli numbers, unified (p,q)-Bernoulli polynomials, h(x)-Fibonacci polynomials, and h(x)-Lucas polynomials. We also introduce the generalized bivariate (p,q)-Bernoulli-Fibonacci and generalized bivariate (p,q)-Bernoulli-Lucas polynomials and numbers. Then, we derive some properties of these newly established polynomials and numbers by using their generating functions with their functional equations. Finally, we provide some families of bilinear and bilateral generating functions for the generalized bivariate (p,q)-Bernoulli-Fibonacci polynomials.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] ON TWO BIVARIATE KINDS OF (p,q)-BERNOULLI POLYNOMIALS
    Sadjang, P. Njionou
    Duran, Ugur
    MISKOLC MATHEMATICAL NOTES, 2019, 20 (02) : 1185 - 1199
  • [2] Inverse of triangular matrices and generalized bivariate Fibonacci and Lucas p-polynomials
    Sahin, Adem
    Kaygisiz, Kenan
    NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2016, 22 (01) : 18 - 28
  • [3] A NOTE ON THE GENERALIZED BERNOULLI POLYNOMIALS WITH (p, q)-POLYLOGARITHM FUNCTION
    Jung, N. S.
    JOURNAL OF APPLIED MATHEMATICS & INFORMATICS, 2020, 38 (1-2): : 145 - 157
  • [4] GENERATING FUNCTIONS FOR THE GENERALIZED BIVARIATE FIBONACCI AND LUCAS POLYNOMIALS
    Erkus-Duman, Esra
    Tuglu, Naim
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2015, 18 (05) : 815 - 821
  • [5] Special transforms of the generalized bivariate Fibonacci and Lucas polynomials
    Yilmaz, Nazmiye
    Aktas, Ibrahim
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2023, 52 (03): : 640 - 651
  • [6] A matrix approach to generalized Bernoulli-Fibonacci polynomials of order m and applications
    Ramirez, William
    Urieles, Alejandro
    Forero, Eduardo
    Ortega, Maria Jose
    Riyasat, Mumtaz
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 2024,
  • [7] Generalized Bivariate Lucas p-Polynomials and Hessenberg Matrices
    Kaygisiz, Kenan
    Sahin, Adem
    JOURNAL OF INTEGER SEQUENCES, 2012, 15 (03)
  • [8] Incomplete Bivariate Fibonacci and Lucas p-Polynomials
    Tasci, Dursun
    Firengiz, Mirac Cetin
    Tuglu, Naim
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2012, 2012
  • [9] Congruences for generalized q-Bernoulli polynomials
    Cenkci, Mehmet
    Kurt, Veli
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2008, 2008 (1)
  • [10] On Generalized Fibonacci Polynomials and Bernoulli Numbers
    Zhang, Tianping
    Ma, Yuankui
    JOURNAL OF INTEGER SEQUENCES, 2005, 8 (05)