Active learning on a programmable photonic quantum processor

被引:4
|
作者
Ding, Chen [1 ]
Xu, Xiao-Yue [1 ]
Niu, Yun-Fei [1 ]
Zhang, Shuo [1 ]
Huang, He-Liang [1 ,2 ]
Bao, Wan-Su [1 ]
机构
[1] Henan Key Lab Quantum Informat & Cryptog, Zhengzhou 450000, Henan, Peoples R China
[2] Univ Sci & Technol China, Hefei Natl Lab, Hefei 230088, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
quantum machine learning; linear optical quantum computing; active learning; STATES;
D O I
10.1088/2058-9565/acdd92
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Training a quantum machine learning model generally requires a large labeled dataset, which incurs high labeling and computational costs. To reduce such costs, a selective training strategy, called active learning (AL), chooses only a subset of the original dataset to learn while maintaining the trained model's performance. Here, we design and implement two AL-enpowered variational quantum classifiers to investigate the potential applications and effectiveness of AL in quantum machine learning. Firstly, we build a programmable free-space photonic quantum processor, which enables the programmed implementation of various hybrid quantum-classical computing algorithms. Then, we code the designed variational quantum classifier with AL into the quantum processor, and execute comparative tests for the classifiers with and without the AL strategy. The results validate the great advantage of AL in quantum machine learning, as it saves at most 85% labeling efforts and 91.6% percent computational efforts compared to the training without AL on a data classification task. Our results inspire AL's further applications in large-scale quantum machine learning to drastically reduce training data and speed up training, underpinning the exploration of practical quantum advantages in quantum physics or real-world applications.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] A variational eigenvalue solver on a photonic quantum processor
    Alberto Peruzzo
    Jarrod McClean
    Peter Shadbolt
    Man-Hong Yung
    Xiao-Qi Zhou
    Peter J. Love
    Alán Aspuru-Guzik
    Jeremy L. O’Brien
    Nature Communications, 5
  • [42] Programmable SCOW Mesh Silicon Photonic Processor for Linear Unitary Operator
    Lu, Liangjun
    Zhou, Linjie
    Chen, Jianping
    MICROMACHINES, 2019, 10 (10)
  • [43] Photonic integrated field-programmable disk array signal processor
    Zhang, Weifeng
    Yao, Jianping
    NATURE COMMUNICATIONS, 2020, 11 (01)
  • [44] General-purpose programmable photonic processor for advanced radiofrequency applications
    Daniel Pérez-López
    Ana Gutierrez
    David Sánchez
    Aitor López-Hernández
    Mikel Gutierrez
    Erica Sánchez-Gomáriz
    Juan Fernández
    Alejandro Cruz
    Alberto Quirós
    Zhenyun Xie
    Jesús Benitez
    Nandor Bekesi
    Alejandro Santomé
    Diego Pérez-Galacho
    Prometheus DasMahapatra
    Andrés Macho
    José Capmany
    Nature Communications, 15
  • [45] Photonic integrated field-programmable disk array signal processor
    Weifeng Zhang
    Jianping Yao
    Nature Communications, 11
  • [46] General-purpose programmable photonic processor for advanced radiofrequency applications
    Perez-Lopez, Daniel
    Gutierrez, Ana
    Sanchez, David
    Lopez-Hernandez, Aitor
    Gutierrez, Mikel
    Sanchez-Gomariz, Erica
    Fernandez, Juan
    Cruz, Alejandro
    Quiros, Alberto
    Xie, Zhenyun
    Benitez, Jesus
    Bekesi, Nandor
    Santome, Alejandro
    Perez-Galacho, Diego
    DasMahapatra, Prometheus
    Macho, Andres
    Capmany, Jose
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [47] Programmable Pulse Processor Using Cascaded Microrings on Silicon Photonic Circuits
    Zhao, Yuhe
    Dong, Jianji
    2018 PROGRESS IN ELECTROMAGNETICS RESEARCH SYMPOSIUM (PIERS-TOYAMA), 2018, : 396 - 398
  • [48] Experimental certification of contextuality, coherence, and dimension in a programmable universal photonic processor
    Giordani, Taira
    Wagner, Rafael
    Esposito, Chiara
    Camillini, Anita
    Hoch, Francesco
    Carvacho, Gonzalo
    Pentangelo, Ciro
    Ceccarelli, Francesco
    Piacentini, Simone
    Crespi, Andrea
    Spagnolo, Nicolo
    Osellame, Roberto
    Galvao, Ernesto F.
    Sciarrino, Fabio
    SCIENCE ADVANCES, 2023, 9 (44)
  • [49] 8x8 Programmable Si3N4 Photonic Processor for Linear Quantum Processing
    Taballione, Caterina
    Wolterink, Tom A. W.
    Lugani, Jasleen
    Eckstein, Andreas
    Bell, Bryn A.
    Grootjans, Robert
    Visscher, Ilka
    Geskus, Dimitri
    Roeloffzen, Chris G. H.
    Renema, Jelmer J.
    Walmsley, Ian A.
    Pinkse, Pepijn W. H.
    Boller, Klaus-J
    2019 CONFERENCE ON LASERS AND ELECTRO-OPTICS EUROPE & EUROPEAN QUANTUM ELECTRONICS CONFERENCE (CLEO/EUROPE-EQEC), 2019,
  • [50] The programmable processor
    José Capmany
    Ivana Gasulla
    Daniel Pérez
    Nature Photonics, 2016, 10 : 6 - 8