Active learning on a programmable photonic quantum processor

被引:4
|
作者
Ding, Chen [1 ]
Xu, Xiao-Yue [1 ]
Niu, Yun-Fei [1 ]
Zhang, Shuo [1 ]
Huang, He-Liang [1 ,2 ]
Bao, Wan-Su [1 ]
机构
[1] Henan Key Lab Quantum Informat & Cryptog, Zhengzhou 450000, Henan, Peoples R China
[2] Univ Sci & Technol China, Hefei Natl Lab, Hefei 230088, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
quantum machine learning; linear optical quantum computing; active learning; STATES;
D O I
10.1088/2058-9565/acdd92
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Training a quantum machine learning model generally requires a large labeled dataset, which incurs high labeling and computational costs. To reduce such costs, a selective training strategy, called active learning (AL), chooses only a subset of the original dataset to learn while maintaining the trained model's performance. Here, we design and implement two AL-enpowered variational quantum classifiers to investigate the potential applications and effectiveness of AL in quantum machine learning. Firstly, we build a programmable free-space photonic quantum processor, which enables the programmed implementation of various hybrid quantum-classical computing algorithms. Then, we code the designed variational quantum classifier with AL into the quantum processor, and execute comparative tests for the classifiers with and without the AL strategy. The results validate the great advantage of AL in quantum machine learning, as it saves at most 85% labeling efforts and 91.6% percent computational efforts compared to the training without AL on a data classification task. Our results inspire AL's further applications in large-scale quantum machine learning to drastically reduce training data and speed up training, underpinning the exploration of practical quantum advantages in quantum physics or real-world applications.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Quantum transport simulations in a programmable nanophotonic processor
    Harris N.C.
    Steinbrecher G.R.
    Prabhu M.
    Lahini Y.
    Mower J.
    Bunandar D.
    Chen C.
    Wong F.N.C.
    Baehr-Jones T.
    Hochberg M.
    Lloyd S.
    Englund D.
    Nature Photonics, 2017, 11 (7) : 447 - 452
  • [22] Quantum supremacy using a programmable superconducting processor
    Arute, Frank
    Arya, Kunal
    Babbush, Ryan
    Bacon, Dave
    Bardin, Joseph C.
    Barends, Rami
    Biswas, Rupak
    Boixo, Sergio
    Brandao, Fernando G. S. L.
    Buell, David A.
    Burkett, Brian
    Chen, Yu
    Chen, Zijun
    Chiaro, Ben
    Collins, Roberto
    Courtney, William
    Dunsworth, Andrew
    Farhi, Edward
    Foxen, Brooks
    Fowler, Austin
    Gidney, Craig
    Giustina, Marissa
    Graff, Rob
    Guerin, Keith
    Habegger, Steve
    Harrigan, Matthew P.
    Hartmann, Michael J.
    Ho, Alan
    Hoffmann, Markus
    Huang, Trent
    Humble, Travis S.
    Isakov, Sergei V.
    Jeffrey, Evan
    Jiang, Zhang
    Kafri, Dvir
    Kechedzhi, Kostyantyn
    Kelly, Julian
    Klimov, Paul V.
    Knysh, Sergey
    Korotkov, Alexander
    Kostritsa, Fedor
    Landhuis, David
    Lindmark, Mike
    Lucero, Erik
    Lyakh, Dmitry
    Mandra, Salvatore
    McClean, Jarrod R.
    McEwen, Matthew
    Megrant, Anthony
    Mi, Xiao
    NATURE, 2019, 574 (7779) : 505 - +
  • [23] Variational Quantum Unsampling on a Programmable Nanophotonic Processor
    Carolan, Jacques
    Mosheni, Masoud
    Olson, Jonathan P.
    Prabhu, Mihika
    Chen, Changchen
    Bunandar, Darius
    Harris, Nicholas C.
    Wong, Franco N. C.
    Hochberg, Michael
    Lloyd, Seth
    Englund, Dirk
    2019 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2019,
  • [24] Generalized measurements via a programmable quantum processor
    Rosko, M
    Buzek, V
    Chouha, PR
    Hillery, M
    PHYSICAL REVIEW A, 2003, 68 (06):
  • [25] Multi-output programmable quantum processor
    Yu, YF
    Feng, J
    Zhan, MS
    PHYSICAL REVIEW A, 2002, 66 (05): : 5
  • [26] Quantum supremacy using a programmable superconducting processor
    Frank Arute
    Kunal Arya
    Ryan Babbush
    Dave Bacon
    Joseph C. Bardin
    Rami Barends
    Rupak Biswas
    Sergio Boixo
    Fernando G. S. L. Brandao
    David A. Buell
    Brian Burkett
    Yu Chen
    Zijun Chen
    Ben Chiaro
    Roberto Collins
    William Courtney
    Andrew Dunsworth
    Edward Farhi
    Brooks Foxen
    Austin Fowler
    Craig Gidney
    Marissa Giustina
    Rob Graff
    Keith Guerin
    Steve Habegger
    Matthew P. Harrigan
    Michael J. Hartmann
    Alan Ho
    Markus Hoffmann
    Trent Huang
    Travis S. Humble
    Sergei V. Isakov
    Evan Jeffrey
    Zhang Jiang
    Dvir Kafri
    Kostyantyn Kechedzhi
    Julian Kelly
    Paul V. Klimov
    Sergey Knysh
    Alexander Korotkov
    Fedor Kostritsa
    David Landhuis
    Mike Lindmark
    Erik Lucero
    Dmitry Lyakh
    Salvatore Mandrà
    Jarrod R. McClean
    Matthew McEwen
    Anthony Megrant
    Xiao Mi
    Nature, 2019, 574 : 505 - 510
  • [27] Quantum Random Walks in a Programmable Nanophotonic Processor
    Harris, Nicholas C.
    Steinbrecher, Gregory R.
    Mower, Jacob
    Lahini, Yoav
    Englund, Dirk
    2015 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2015,
  • [28] Multi-output programmable quantum processor
    Yu, Yafei
    Feng, Jian
    Zhan, Mingsheng
    Physical Review A - Atomic, Molecular, and Optical Physics, 2002, 66 (05): : 1 - 052310
  • [29] Quantum transport simulations in a programmable nanophotonic processor
    Harris, Nicholas C.
    Steinbrecher, Gregory R.
    Prabhu, Mihika
    Lahini, Yoav
    Mower, Jacob
    Bunandar, Darius
    Chen, Changchen
    Wong, Franco N. C.
    Baehr-Jones, Tom
    Hochberg, Michael
    Lloyd, Seth
    Englund, Dirk
    NATURE PHOTONICS, 2017, 11 (07) : 447 - +
  • [30] Photonic Quantum Programmable Gate Arrays
    Bartlett, Ben
    Fan, Shanhui
    2020 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2020,