Active learning on a programmable photonic quantum processor

被引:4
|
作者
Ding, Chen [1 ]
Xu, Xiao-Yue [1 ]
Niu, Yun-Fei [1 ]
Zhang, Shuo [1 ]
Huang, He-Liang [1 ,2 ]
Bao, Wan-Su [1 ]
机构
[1] Henan Key Lab Quantum Informat & Cryptog, Zhengzhou 450000, Henan, Peoples R China
[2] Univ Sci & Technol China, Hefei Natl Lab, Hefei 230088, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
quantum machine learning; linear optical quantum computing; active learning; STATES;
D O I
10.1088/2058-9565/acdd92
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Training a quantum machine learning model generally requires a large labeled dataset, which incurs high labeling and computational costs. To reduce such costs, a selective training strategy, called active learning (AL), chooses only a subset of the original dataset to learn while maintaining the trained model's performance. Here, we design and implement two AL-enpowered variational quantum classifiers to investigate the potential applications and effectiveness of AL in quantum machine learning. Firstly, we build a programmable free-space photonic quantum processor, which enables the programmed implementation of various hybrid quantum-classical computing algorithms. Then, we code the designed variational quantum classifier with AL into the quantum processor, and execute comparative tests for the classifiers with and without the AL strategy. The results validate the great advantage of AL in quantum machine learning, as it saves at most 85% labeling efforts and 91.6% percent computational efforts compared to the training without AL on a data classification task. Our results inspire AL's further applications in large-scale quantum machine learning to drastically reduce training data and speed up training, underpinning the exploration of practical quantum advantages in quantum physics or real-world applications.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Quantum computational advantage with a programmable photonic processor
    Madsen, Lars S.
    Laudenbach, Fabian
    Askarani, Mohsen Falamarzi.
    Rortais, Fabien
    Vincent, Trevor
    Bulmer, Jacob F. F.
    Miatto, Filippo M.
    Neuhaus, Leonhard
    Helt, Lukas G.
    Collins, Matthew J.
    Lita, Adriana E.
    Gerrits, Thomas
    Nam, Sae Woo
    Vaidya, Varun D.
    Menotti, Matteo
    Dhand, Ish
    Vernon, Zachary
    Quesada, Nicolas
    Lavoie, Jonathan
    NATURE, 2022, 606 (7912) : 75 - +
  • [2] Quantum computational advantage with a programmable photonic processor
    Lars S. Madsen
    Fabian Laudenbach
    Mohsen Falamarzi. Askarani
    Fabien Rortais
    Trevor Vincent
    Jacob F. F. Bulmer
    Filippo M. Miatto
    Leonhard Neuhaus
    Lukas G. Helt
    Matthew J. Collins
    Adriana E. Lita
    Thomas Gerrits
    Sae Woo Nam
    Varun D. Vaidya
    Matteo Menotti
    Ish Dhand
    Zachary Vernon
    Nicolás Quesada
    Jonathan Lavoie
    Nature, 2022, 606 : 75 - 81
  • [3] An integrated programmable quantum photonic processor for linear optics
    Mower, Jacob
    Harris, Nicholas C.
    Steinbrecher, Greg
    Lahini, Yoav
    Englund, Dirk
    2014 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2014,
  • [4] Continuous-variable quantum kernel method on a programmable photonic quantum processor
    Anai, Keitaro
    Ikehara, Shion
    Yano, Yoshichika
    Okuno, Daichi
    Takeda, Shuntaro
    PHYSICAL REVIEW A, 2024, 110 (02)
  • [5] Continuous-variable quantum approximate optimization on a programmable photonic quantum processor
    Enomoto, Yutaro
    Anai, Keitaro
    Udagawa, Kenta
    Takeda, Shuntaro
    PHYSICAL REVIEW RESEARCH, 2023, 5 (04):
  • [6] Quantum Photonic Processor based on Programmable Integrated Silicon Nitride Circuits
    Epping, Jorn P.
    Taballione, Caterina
    van der Meer, Reinier
    Snijders, Henk
    Hooischuur, Peter
    Kassenberg, Ben
    de Goede, Michiel
    Venderbosch, Pim
    Toebes, Chris
    Van den Vlekkert, Hans
    Pinkse, Pepijn W.
    Renema, Jelmer
    2021 CONFERENCE ON LASERS AND ELECTRO-OPTICS EUROPE & EUROPEAN QUANTUM ELECTRONICS CONFERENCE (CLEO/EUROPE-EQEC), 2021,
  • [7] Programmable Quantum Processor with Quantum Dot Qubits
    陈垚
    林佛良
    梁喜
    姜年权
    Chinese Physics Letters, 2019, (07) : 14 - 17
  • [8] Programmable Quantum Processor with Quantum Dot Qubits
    陈垚
    林佛良
    梁喜
    姜年权
    Chinese Physics Letters, 2019, 36 (07) : 14 - 17
  • [9] Programmable Quantum Processor with Quantum Dot Qubits
    Chen, Yao
    Lin, Fo-Liang
    Liang, Xi
    Jiang, Nian-Quan
    CHINESE PHYSICS LETTERS, 2019, 36 (07)
  • [10] Programmable photonic signal processor chip for radiofrequency applications
    Zhuang, Leimeng
    Roeloffzen, Chris G. H.
    Hoekman, Marcel
    Boller, Klaus-J.
    Lowery, Arthur J.
    OPTICA, 2015, 2 (10): : 854 - 859