Singular-Value Statistics of Non-Hermitian Random Matrices and Open Quantum Systems

被引:11
|
作者
Kawabata, Kohei [1 ,2 ]
Xiao, Zhenyu [3 ]
Ohtsuki, Tomi [4 ]
Shindou, Ryuichi [3 ]
机构
[1] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA
[2] Univ Tokyo, Inst Solid State Phys, Kashiwa, Chiba 2778581, Japan
[3] Peking Univ, Int Ctr Quantum Mat, Beijing 100871, Peoples R China
[4] Sophia Univ, Phys Div, Chiyoda Ku, Tokyo 1028554, Japan
来源
PRX QUANTUM | 2023年 / 4卷 / 04期
基金
中国国家自然科学基金; 日本学术振兴会;
关键词
UNIVERSAL CONDUCTANCE FLUCTUATIONS; LOCALIZATION; SYMMETRY; SPECTRUM; THERMALIZATION; EIGENVALUES; REPULSION; ENSEMBLES; PHYSICS;
D O I
10.1103/PRXQuantum.4.040312
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The spectral statistics of non-Hermitian random matrices are of importance as a diagnostic tool for chaotic behavior in open quantum systems. Here, we investigate the statistical properties of singular values in non-Hermitian random matrices as an effective measure of quantifying dissipative quantum chaos. By means of Hermitization, we reveal the unique characteristics of the singular-value statistics that distinguish them from the complex-eigenvalue statistics, and establish the comprehensive classification of the singular-value statistics for all the 38-fold symmetry classes of non-Hermitian random matrices. We also analytically derive the singular-value statistics of small random matrices, which well describe those of large random matrices in the similar spirit to the Wigner surmise. Furthermore, we demonstrate that singular values of open quantum many-body systems follow the random-matrix statistics, thereby identifying chaos and nonintegrability in open quantum systems. Our work elucidates that the singular-value statis-tics serve as a clear indicator of symmetry and lay a foundation for statistical physics of open quantum systems.
引用
收藏
页数:24
相关论文
共 50 条
  • [31] Local laws for non-Hermitian random matrices
    F. Götze
    A. A. Naumov
    A. N. Tikhomirov
    Doklady Mathematics, 2017, 96 : 558 - 560
  • [32] New Applications of Non-Hermitian Random Matrices
    A. Zabrodin
    Annales Henri Poincaré, 2003, 4 : 851 - 861
  • [33] Edge universality for non-Hermitian random matrices
    Cipolloni, Giorgio
    Erdos, Laszlo
    Schroeder, Dominik
    PROBABILITY THEORY AND RELATED FIELDS, 2021, 179 (1-2) : 1 - 28
  • [34] RITZ VALUE LOCALIZATION FOR NON-HERMITIAN MATRICES
    Carden, Russell L.
    Embree, Mark
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2012, 33 (04) : 1320 - 1338
  • [35] Krylov space approach to singular value decomposition in non-Hermitian systems
    Nandy, Pratik
    Pathak, Tanay
    Xian, Zhuo-Yu
    Erdmenger, Johanna
    PHYSICAL REVIEW B, 2025, 111 (06)
  • [36] Lyapunov equation in open quantum systems and non-Hermitian physics
    Purkayastha, Archak
    PHYSICAL REVIEW A, 2022, 105 (06)
  • [37] A non-Hermitian Hamilton operator and the physics of open quantum systems
    Rotter, Ingrid
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (15)
  • [38] Superradiance, Disorder, and the Non-Hermitian Hamiltonian in Open Quantum Systems
    Celardo, G. L.
    Biella, A.
    Giusteri, G. G.
    Mattioni, F.
    Zhang, Y.
    Kaplan, L.
    FOURTH CONFERENCE ON NUCLEI AND MESOSCOPIC PHYSICS 2014, 2014, 1619
  • [39] Rank One Non-Hermitian Perturbations of Hermitian β-Ensembles of Random Matrices
    Kozhan, Rostyslav
    JOURNAL OF STATISTICAL PHYSICS, 2017, 168 (01) : 92 - 108
  • [40] ON THE SPECTRUM OF SUM AND PRODUCT OF NON-HERMITIAN RANDOM MATRICES
    Bordenave, Charles
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2011, 16 : 104 - 113