Singular-Value Statistics of Non-Hermitian Random Matrices and Open Quantum Systems

被引:11
|
作者
Kawabata, Kohei [1 ,2 ]
Xiao, Zhenyu [3 ]
Ohtsuki, Tomi [4 ]
Shindou, Ryuichi [3 ]
机构
[1] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA
[2] Univ Tokyo, Inst Solid State Phys, Kashiwa, Chiba 2778581, Japan
[3] Peking Univ, Int Ctr Quantum Mat, Beijing 100871, Peoples R China
[4] Sophia Univ, Phys Div, Chiyoda Ku, Tokyo 1028554, Japan
来源
PRX QUANTUM | 2023年 / 4卷 / 04期
基金
中国国家自然科学基金; 日本学术振兴会;
关键词
UNIVERSAL CONDUCTANCE FLUCTUATIONS; LOCALIZATION; SYMMETRY; SPECTRUM; THERMALIZATION; EIGENVALUES; REPULSION; ENSEMBLES; PHYSICS;
D O I
10.1103/PRXQuantum.4.040312
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The spectral statistics of non-Hermitian random matrices are of importance as a diagnostic tool for chaotic behavior in open quantum systems. Here, we investigate the statistical properties of singular values in non-Hermitian random matrices as an effective measure of quantifying dissipative quantum chaos. By means of Hermitization, we reveal the unique characteristics of the singular-value statistics that distinguish them from the complex-eigenvalue statistics, and establish the comprehensive classification of the singular-value statistics for all the 38-fold symmetry classes of non-Hermitian random matrices. We also analytically derive the singular-value statistics of small random matrices, which well describe those of large random matrices in the similar spirit to the Wigner surmise. Furthermore, we demonstrate that singular values of open quantum many-body systems follow the random-matrix statistics, thereby identifying chaos and nonintegrability in open quantum systems. Our work elucidates that the singular-value statis-tics serve as a clear indicator of symmetry and lay a foundation for statistical physics of open quantum systems.
引用
收藏
页数:24
相关论文
共 50 条
  • [21] ON THE RIGHTMOST EIGENVALUE OF NON-HERMITIAN RANDOM MATRICES
    Cipolloni, Giorgio
    Erdos, Laszlo
    Schroeder, Dominik
    Xu, Yuanyuan
    ANNALS OF PROBABILITY, 2023, 51 (06): : 2192 - 2242
  • [22] Functional CLT for non-Hermitian random matrices
    Erdos, Laszlo
    Ji, Hong Chang
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2023, 59 (04): : 2083 - 2105
  • [23] Products of independent non-Hermitian random matrices
    O'Rourke, Sean
    Soshnikov, Alexander
    ELECTRONIC JOURNAL OF PROBABILITY, 2011, 16 : 2219 - 2245
  • [24] Local Laws for Non-Hermitian Random Matrices
    Goetze, F.
    Naumov, A. A.
    Tikhomirov, A. N.
    DOKLADY MATHEMATICS, 2017, 96 (03) : 558 - 560
  • [25] Wigner surmise for Hermitian and non-Hermitian chiral random matrices
    Akemann, G.
    Bittner, E.
    Phillips, M. J.
    Shifrin, L.
    PHYSICAL REVIEW E, 2009, 80 (06):
  • [26] On delocalization of eigenvectors of random non-Hermitian matrices
    Anna Lytova
    Konstantin Tikhomirov
    Probability Theory and Related Fields, 2020, 177 : 465 - 524
  • [27] On delocalization of eigenvectors of random non-Hermitian matrices
    Lytova, Anna
    Tikhomirov, Konstantin
    PROBABILITY THEORY AND RELATED FIELDS, 2020, 177 (1-2) : 465 - 524
  • [28] Universality classes of non-Hermitian random matrices
    Hamazaki, Ryusuke
    Kawabata, Kohei
    Kura, Naoto
    Ueda, Masahito
    PHYSICAL REVIEW RESEARCH, 2020, 2 (02):
  • [29] New applications of non-Hermitian random matrices
    Zabrodin, A
    ANNALES HENRI POINCARE, 2003, 4 (Suppl 2): : S851 - S861
  • [30] Edge universality for non-Hermitian random matrices
    Giorgio Cipolloni
    László Erdős
    Dominik Schröder
    Probability Theory and Related Fields, 2021, 179 : 1 - 28