Singular-Value Statistics of Non-Hermitian Random Matrices and Open Quantum Systems

被引:11
|
作者
Kawabata, Kohei [1 ,2 ]
Xiao, Zhenyu [3 ]
Ohtsuki, Tomi [4 ]
Shindou, Ryuichi [3 ]
机构
[1] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA
[2] Univ Tokyo, Inst Solid State Phys, Kashiwa, Chiba 2778581, Japan
[3] Peking Univ, Int Ctr Quantum Mat, Beijing 100871, Peoples R China
[4] Sophia Univ, Phys Div, Chiyoda Ku, Tokyo 1028554, Japan
来源
PRX QUANTUM | 2023年 / 4卷 / 04期
基金
中国国家自然科学基金; 日本学术振兴会;
关键词
UNIVERSAL CONDUCTANCE FLUCTUATIONS; LOCALIZATION; SYMMETRY; SPECTRUM; THERMALIZATION; EIGENVALUES; REPULSION; ENSEMBLES; PHYSICS;
D O I
10.1103/PRXQuantum.4.040312
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The spectral statistics of non-Hermitian random matrices are of importance as a diagnostic tool for chaotic behavior in open quantum systems. Here, we investigate the statistical properties of singular values in non-Hermitian random matrices as an effective measure of quantifying dissipative quantum chaos. By means of Hermitization, we reveal the unique characteristics of the singular-value statistics that distinguish them from the complex-eigenvalue statistics, and establish the comprehensive classification of the singular-value statistics for all the 38-fold symmetry classes of non-Hermitian random matrices. We also analytically derive the singular-value statistics of small random matrices, which well describe those of large random matrices in the similar spirit to the Wigner surmise. Furthermore, we demonstrate that singular values of open quantum many-body systems follow the random-matrix statistics, thereby identifying chaos and nonintegrability in open quantum systems. Our work elucidates that the singular-value statis-tics serve as a clear indicator of symmetry and lay a foundation for statistical physics of open quantum systems.
引用
收藏
页数:24
相关论文
共 50 条
  • [1] Simulation of Linear Non-Hermitian Boundary-Value Problems with Quantum Singular-Value Transformation
    Novikau, I.
    Dodin, I. Y.
    Startsev, E. A.
    PHYSICAL REVIEW APPLIED, 2023, 19 (05)
  • [2] RANDOM MATRICES: UNIVERSALITY OF LOCAL SPECTRAL STATISTICS OF NON-HERMITIAN MATRICES
    Tao, Terence
    Vu, Van
    ANNALS OF PROBABILITY, 2015, 43 (02): : 782 - 874
  • [3] Non-Hermitian random matrices and integrable quantum Hamiltonians
    Akuzawa, T
    Wadati, M
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1996, 65 (06) : 1583 - 1588
  • [4] PARTIAL LINEAR EIGENVALUE STATISTICS FOR NON-HERMITIAN RANDOM MATRICES
    O'Rourke, S.
    Williams, N.
    THEORY OF PROBABILITY AND ITS APPLICATIONS, 2023, 67 (04) : 613 - 632
  • [5] Analytic approach for the number statistics of non-Hermitian random matrices
    Perez Castillo, Isaac
    Guzman-Gonzalez, Edgar
    Ramos Sanchez, Antonio Tonatiuh
    Metz, Fernando L.
    PHYSICAL REVIEW E, 2021, 103 (06)
  • [6] Non-Hermitian Random Matrices and Integrable Quantum Hamiltonians
    Akuzawa, T.
    Wadati, M.
    Journal of the Physical Society of Japan, 65 (06):
  • [7] PARTIAL LINEAR EIGENVALUE STATISTICS FOR NON-HERMITIAN RANDOM MATRICES
    O'Rourke, S.
    Williams, N.
    THEORY OF PROBABILITY AND ITS APPLICATIONS, 2022, 67 (04) : 613 - 632
  • [8] Spectral Statistics of Non-Hermitian Matrices and Dissipative Quantum Chaos
    Li, Jiachen
    Prosen, Tomaz
    Chan, Amos
    PHYSICAL REVIEW LETTERS, 2021, 127 (17)
  • [9] Universal hard-edge statistics of non-Hermitian random matrices
    Xiao, Zhenyu
    Shindou, Ryuichi
    Kawabata, Kohei
    PHYSICAL REVIEW RESEARCH, 2024, 6 (02):
  • [10] ON WORDS OF NON-HERMITIAN RANDOM MATRICES
    Dubach, Guillaume
    Peled, Yuval
    ANNALS OF PROBABILITY, 2021, 49 (04): : 1886 - 1916