On k-Star Arboricity of Graphs

被引:0
|
作者
陶昉昀 [1 ,2 ]
林文松 [1 ]
机构
[1] Department of Mathematics,Southeast University
[2] College of Science,College of Science,Nanjing Forestry University
基金
中国国家自然科学基金;
关键词
star arboricity; k-star arboricity; linear k-arboricity; cubic graphs; subcubic graphs;
D O I
10.19884/j.1672-5220.2014.03.021
中图分类号
O157.5 [图论];
学科分类号
摘要
A star forest is a forest whose components are stars. The star arboricity of a graph G,denoted by sa( G),is the minimum number of star forests needed to decompose G. Let k be a positive integer. A k-star forest is a forest whose components are stars of order at most k + 1. The k-star arboricity of a graph G,denoted by sak( G),is the minimum number of k-star forests needed to decompose G. In this paper,it is proved that if any two vertices of degree 3 are nonadjacent in a subcubic graph G then sa2( G) ≤2.For general subcubic graphs G, a polynomial-time algorithm is described to decompose G into three 2-star forests. For a tree T andΔ( a positive integer k, T)it is proved that≤ sakk( T) ≤Δ( T)- 1+ 1,where Δ( T) is the maximum degree of T.kMoreover,a linear-time algorithm is designed to determine whether sak( T) ≤m for any tree T and any positive integers m and k.
引用
收藏
页码:335 / 338
页数:4
相关论文
共 50 条
  • [31] On the linear k-arboricity of cubic graphs
    Discrete Math, 1-3 (293-297):
  • [32] THE EFFECTIVE TEMPERATURES AND COLORS OF G-STAR AND K-STAR
    BELL, RA
    GUSTAFSSON, B
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 1989, 236 (03) : 653 - 707
  • [33] STUDY OF K-STAR(890) AND K-STAR(1420) PRODUCTION MECHANISMS IN K+P-]K+PI-DELTA++ AT 13 GEV-C
    ESTABROOKS, P
    MARTIN, AD
    BRANDENBURG, GW
    CARNEGIE, RK
    CASHMORE, RJ
    DAVIER, M
    DUNWOODIE, WM
    LASINSKI, TA
    LEITH, DWGS
    MATTHEWS, JAJ
    WALDEN, P
    WILLIAMS, SH
    NUCLEAR PHYSICS B, 1976, 106 (01) : 61 - 76
  • [34] The acircuitic directed star arboricity of subcubic graphs is at most four
    Pinlou, Alexandre
    Sopena, Eric
    DISCRETE MATHEMATICS, 2006, 306 (24) : 3281 - 3289
  • [35] CURRENT-ALGEBRA AND RADIATIVE K-STAR DECAY
    WATAL, C
    AGARWAL, BK
    INDIAN JOURNAL OF PURE & APPLIED PHYSICS, 1974, 12 (03) : 232 - 233
  • [36] Linear k-arboricity of complete bipartite graphs
    Guo, Zhiwei
    Zhao, Haixing
    Mao, Yaping
    UTILITAS MATHEMATICA, 2020, 114 : 295 - 308
  • [37] AMPLITUDES AND EXCHANGE MECHANISMS FOR K-STAR RESONANCES PRODUCED BY REACTIONS K-+(-)P-] K-STAR(+)-P AT 10 GEV-C
    BALDI, R
    BOHRINGER, T
    DORSAZ, PA
    HUNGERBUHLER, V
    KIENZLEFOCACCI, MN
    MARTIN, M
    MERMOUD, A
    NEF, C
    SIEGRIST, P
    PHYSICS LETTERS B, 1977, 70 (03) : 377 - 382
  • [38] INCLUSIVE PHOTOPRODUCTION OF PHI, K-STAR(890) AND K-STAR(1420) IN THE PHOTON ENERGY-RANGE 20 TO 70-GEV
    ATKINSON, M
    AXON, TJ
    BARBERIS, D
    BRODBECK, TJ
    BROOKES, GR
    BUNN, JJ
    BUSSEY, PJ
    CLEGG, AB
    DAINTON, JB
    DAVENPORT, M
    DICKINSON, B
    DIEKMANN, B
    DONNACHIE, A
    ELLISON, RJ
    FLOWER, P
    FLYNN, PJ
    GALBRAITH, W
    HEINLOTH, K
    HENDERSON, RCW
    HUGHESJONES, RE
    HUTTON, JS
    IBBOTSON, M
    JAKOB, HP
    JUNG, M
    KUMAR, BR
    LABERRIGUE, J
    LAFFERTY, GD
    LANE, JB
    LASSALLE, JC
    LEVY, JM
    LIEBENAU, V
    MCCLATCHEY, RH
    MERCER, D
    MORRIS, JAG
    MORRIS, JV
    NEWTON, D
    PATERSON, CN
    PATRICK, GN
    PAUL, E
    RAINE, C
    REIDENBACH, M
    ROTSCHEIDT, H
    SCHLOSSER, A
    SHARP, PH
    SKILLICORN, IO
    SMITH, KM
    STORR, KM
    THOMPSON, RJ
    DELAVAISSIERE, C
    WAITE, AP
    ZEITSCHRIFT FUR PHYSIK C-PARTICLES AND FIELDS, 1986, 30 (04): : 521 - 530
  • [39] Tool condition monitoring using K-star algorithm
    Painuli, Sanidhya
    Elangovan, M.
    Sugumaran, V.
    EXPERT SYSTEMS WITH APPLICATIONS, 2014, 41 (06) : 2638 - 2643
  • [40] Linear k-arboricity of complete bipartite graphs
    Guo, Zhiwei
    Zhao, Haixing
    Mao, Yaping
    UTILITAS MATHEMATICA, 2019, 113 : 17 - 30