Linear k-arboricity of complete bipartite graphs

被引:0
|
作者
Guo, Zhiwei [1 ]
Zhao, Haixing [2 ]
Mao, Yaping [3 ,4 ]
机构
[1] Northwestern Polytech Univ, Dept Appl Math, Sch Sci, Xian 710072, Shaanxi, Peoples R China
[2] Qinghai Normal Univ, Sch Comp, Xining 810008, Qinghai, Peoples R China
[3] Qinghai Normal Univ, Sch Math & Stat, Xining 810008, Qinghai, Peoples R China
[4] Key Lab IOT Qinghai Prov, Xining 810008, Qinghai, Peoples R China
基金
美国国家科学基金会;
关键词
Linear k-forest; linear k-arboricity; complete bipartite graph; 2-ARBORICITY;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A linear k-forest refers to a forest in which every component is a path of length at most k. The linear k-arboricity of a graph G is defined as the least number of linear k-forests, whose union is the set of all edges of G. Recently, Zuo et al. obtained the exact values of the linear 2- and 4-arboricity of complete bipartite graphs K-m,K-n for some m and n. In this paper, the exact values of the linear 2i-arboricity of complete bipartite graphs K-2in+2n,K-2in, K-2in+2n,K-2in+1 and K-2in+2n+1,K-2in are obtained, which can be seen as an extension of Zuo et al.' s results.
引用
收藏
页码:17 / 30
页数:14
相关论文
共 50 条
  • [1] Linear k-arboricity of complete bipartite graphs
    Guo, Zhiwei
    Zhao, Haixing
    Mao, Yaping
    UTILITAS MATHEMATICA, 2020, 114 : 295 - 308
  • [2] Linear arboricity and linear k-arboricity of regular graphs
    Alon, N
    Teague, VJ
    Wormald, NC
    GRAPHS AND COMBINATORICS, 2001, 17 (01) : 11 - 16
  • [3] Linear Arboricity and Linear k-Arboricity of Regular Graphs
    Noga Alon
    V. J. Teague
    N. C. Wormald
    Graphs and Combinatorics, 2001, 17 : 11 - 16
  • [4] On the linear K-arboricity of cubic graphs
    Vesel, A
    Zerovnik, J
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2000, 75 (04) : 431 - 444
  • [5] On the linear k-arboricity of cubic graphs
    Discrete Math, 1-3 (293-297):
  • [6] On the linear k-arboricity of cubic graphs
    Jackson, B
    Wormald, NC
    DISCRETE MATHEMATICS, 1996, 162 (1-3) : 293 - 297
  • [8] ON LINEAR K-ARBORICITY
    BERMOND, JC
    FOUQUET, JL
    HABIB, M
    PEROCHE, B
    DISCRETE MATHEMATICS, 1984, 52 (2-3) : 123 - 132
  • [9] Linear k-Arboricity of Hypohamiltonian Graphs with Small Order
    Jia, Nan
    Yin, Jun
    Wang, Chunxia
    Wang, Xia
    2017 14TH INTERNATIONAL SYMPOSIUM ON PERVASIVE SYSTEMS, ALGORITHMS AND NETWORKS & 2017 11TH INTERNATIONAL CONFERENCE ON FRONTIER OF COMPUTER SCIENCE AND TECHNOLOGY & 2017 THIRD INTERNATIONAL SYMPOSIUM OF CREATIVE COMPUTING (ISPAN-FCST-ISCC), 2017, : 66 - 70
  • [10] The linear k-arboricity of digraphs
    Zhou, Xiaoling
    Yang, Chao
    He, Weihua
    AIMS MATHEMATICS, 2022, 7 (03): : 4137 - 4152