Linear k-arboricity of complete bipartite graphs

被引:0
|
作者
Guo, Zhiwei [1 ]
Zhao, Haixing [2 ]
Mao, Yaping [3 ,4 ]
机构
[1] Northwestern Polytech Univ, Dept Appl Math, Sch Sci, Xian 710072, Shaanxi, Peoples R China
[2] Qinghai Normal Univ, Sch Comp, Xining 810008, Qinghai, Peoples R China
[3] Qinghai Normal Univ, Sch Math & Stat, Xining 810008, Qinghai, Peoples R China
[4] Key Lab IOT Qinghai Prov, Xining 810008, Qinghai, Peoples R China
基金
美国国家科学基金会;
关键词
Linear k-forest; linear k-arboricity; complete bipartite graph; 2-ARBORICITY;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A linear k-forest refers to a forest in which every component is a path of length at most k. The linear k-arboricity of a graph G is defined as the least number of linear k-forests, whose union is the set of all edges of G. Recently, Zuo et al. obtained the exact values of the linear 2- and 4-arboricity of complete bipartite graphs K-m,K-n for some m and n. In this paper, the exact values of the linear 2i-arboricity of complete bipartite graphs K-2in+2n,K-2in, K-2in+2n,K-2in+1 and K-2in+2n+1,K-2in are obtained, which can be seen as an extension of Zuo et al.' s results.
引用
收藏
页码:17 / 30
页数:14
相关论文
共 50 条
  • [41] Packing bipartite graphs with covers of complete bipartite graphs
    Chalopin, Jeremie
    Paulusma, Daniel
    DISCRETE APPLIED MATHEMATICS, 2014, 168 : 40 - 50
  • [42] K1,k-factorization of complete bipartite graphs
    Du, BL
    Wang, J
    DISCRETE MATHEMATICS, 2002, 259 (1-3) : 301 - 306
  • [43] THE LINEAR ARBORICITY OF SOME REGULAR GRAPHS
    ENOMOTO, H
    PEROCHE, B
    JOURNAL OF GRAPH THEORY, 1984, 8 (02) : 309 - 324
  • [44] Linear Arboricity of the Tensor Products of Graphs
    Paulraja, P.
    Sivasankar, S.
    UTILITAS MATHEMATICA, 2016, 99 : 295 - 317
  • [45] The fractional vertex linear arboricity of graphs
    Zuo, Lian-Cui
    Wu, Jian-Liang
    Liu, Jia-Zhuang
    ARS COMBINATORIA, 2006, 81 : 175 - 191
  • [46] LINEAR ARBORICITY FOR GRAPHS WITH MULTIPLE EDGES
    AITDJAFER, H
    JOURNAL OF GRAPH THEORY, 1987, 11 (02) : 135 - 140
  • [47] On the linear arboricity of graphs embeddable in surfaces
    Wang, Huijuan
    Wu, Jianliang
    Liu, Bin
    Chen, Hongyu
    INFORMATION PROCESSING LETTERS, 2014, 114 (09) : 475 - 479
  • [48] THE LINEAR ARBORICITY OF GRAPHS WITH LOW TREEWIDTH
    Tan, Xiang
    Wu, Jian-Liang
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2024, 44 (02) : 475 - 487
  • [49] A Result on Linear Arboricity of Planar Graphs
    Luo, Zhaoyang
    ARS COMBINATORIA, 2015, 120 : 403 - 412
  • [50] The vertex linear arboricity of distance graphs
    Zuo, LC
    Wu, JL
    Liu, JZ
    DISCRETE MATHEMATICS, 2006, 306 (02) : 284 - 289