Classification of Wavelet Bases by Translation Subgroups and Nonharmonic Wavelet Bases

被引:0
|
作者
Qiao Wang Department of Radio Engineering
机构
关键词
Wavelet; Translation invariance; Functional characterization;
D O I
暂无
中图分类号
O152.7 [群的推广];
学科分类号
070104 ;
摘要
The structure of the set S of shiftable points of wavelet subspaces is researched in thispaper.We prove that S=R or S=(1/q)Z where q ∈ N.The spectral and functional characterizationsfor the shiftability are given.Furthermore,the nonharmonic wavelet bases are discussed.
引用
收藏
页码:307 / 312
页数:6
相关论文
共 50 条
  • [41] Hilbert transform pairs of wavelet bases
    Selesnick, IW
    IEEE SIGNAL PROCESSING LETTERS, 2001, 8 (06) : 170 - 173
  • [42] Wavelet Bases in Banach Function Spaces
    Alexei Yu. Karlovich
    Bulletin of the Malaysian Mathematical Sciences Society, 2021, 44 : 1669 - 1689
  • [43] Log-domain wavelet bases
    Haddad, SAP
    Bagga, S
    Serdijn, WA
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2005, 52 (10) : 2023 - 2032
  • [44] Synthesis of fractal signals with wavelet bases
    Liu, F
    Liu, GZ
    Zhang, ZS
    PROGRESS IN NATURAL SCIENCE, 2001, 11 (10) : 792 - 796
  • [45] Shift-orthogonal wavelet bases
    Unser, M
    Thevenaz, P
    Aldroubi, A
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1998, 46 (07) : 1827 - 1836
  • [46] Wavelet Bases in Banach Function Spaces
    Karlovich, Alexei Yu.
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2021, 44 (03) : 1669 - 1689
  • [47] A new family of orthonormal wavelet bases
    L. T. Liu
    H. T. Hsu
    B. X. Gao
    Journal of Geodesy, 1998, 72 : 294 - 303
  • [48] Evolutionary wavelet bases in signal spaces
    da Silva, ARF
    REAL-WORLD APPLICATIONS OF EVOLUTIONARY COMPUTING, PROCEEDINGS, 2000, 1803 : 44 - 53
  • [49] Boundary-compensated wavelet bases
    Coffey, MA
    1997 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS I - V: VOL I: PLENARY, EXPERT SUMMARIES, SPECIAL, AUDIO, UNDERWATER ACOUSTICS, VLSI; VOL II: SPEECH PROCESSING; VOL III: SPEECH PROCESSING, DIGITAL SIGNAL PROCESSING; VOL IV: MULTIDIMENSIONAL SIGNAL PROCESSING, NEURAL NETWORKS - VOL V: STATISTICAL SIGNAL AND ARRAY PROCESSING, APPLICATIONS, 1997, : 2129 - 2132
  • [50] 2-Adic wavelet bases
    S. A. Evdokimov
    M. A. Skopina
    Proceedings of the Steklov Institute of Mathematics, 2009, 266 : 143 - 154