Classification of Wavelet Bases by Translation Subgroups and Nonharmonic Wavelet Bases

被引:0
|
作者
Qiao Wang Department of Radio Engineering
机构
关键词
Wavelet; Translation invariance; Functional characterization;
D O I
暂无
中图分类号
O152.7 [群的推广];
学科分类号
070104 ;
摘要
The structure of the set S of shiftable points of wavelet subspaces is researched in thispaper.We prove that S=R or S=(1/q)Z where q ∈ N.The spectral and functional characterizationsfor the shiftability are given.Furthermore,the nonharmonic wavelet bases are discussed.
引用
收藏
页码:307 / 312
页数:6
相关论文
共 50 条
  • [31] 2-Adic wavelet bases
    Evdokimov, S. A.
    Skopina, M. A.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2009, 266 : S143 - S154
  • [32] Wavelet bases in generalized Besov spaces
    Almeida, A
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 304 (01) : 198 - 211
  • [33] Wavelet packet bases for speaker recognition
    Siafarikas, Mihalis
    Ganchev, Todor
    Fakotakis, Nikos
    19TH IEEE INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE, VOL II, PROCEEDINGS, 2007, : 514 - 517
  • [34] New generalization of orthogonal wavelet bases
    Pleshcheva, E. A.
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2010, 16 (04): : 264 - 271
  • [35] Construction of wavelet bases with vanishing movement
    Peng, RR
    Chen, JM
    Peng, K
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 1999, 20 (03) : 247 - 253
  • [36] BIORTHOGONAL WAVELET BASES ON R(D)
    LONG, RL
    CHEN, DR
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 1995, 2 (03) : 230 - 242
  • [37] 2-adic wavelet bases
    Evdokimov, S. A.
    Skopina, M. A.
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2009, 15 (01): : 135 - 146
  • [38] Construction of wavelet bases with vanishing movement
    Peng Ruiren
    Chen Jiming
    Peng Kang
    Applied Mathematics and Mechanics, 1999, 20 (3) : 247 - 253
  • [39] New generalization of orthogonal wavelet bases
    E. A. Pleshcheva
    Proceedings of the Steklov Institute of Mathematics, 2011, 273 : 124 - 132
  • [40] Synthesis of fractal signals with wavelet bases
    刘峰
    刘贵忠
    张茁生
    ProgressinNaturalScience, 2001, (10) : 74 - 78