Classification of Wavelet Bases by Translation Subgroups and Nonharmonic Wavelet Bases

被引:0
|
作者
Qiao Wang Department of Radio Engineering
机构
关键词
Wavelet; Translation invariance; Functional characterization;
D O I
暂无
中图分类号
O152.7 [群的推广];
学科分类号
070104 ;
摘要
The structure of the set S of shiftable points of wavelet subspaces is researched in thispaper.We prove that S=R or S=(1/q)Z where q ∈ N.The spectral and functional characterizationsfor the shiftability are given.Furthermore,the nonharmonic wavelet bases are discussed.
引用
收藏
页码:307 / 312
页数:6
相关论文
共 50 条
  • [1] Classification of wavelet bases by translation subgroups and nonharmonic wavelet bases
    Wang, Q
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2000, 16 (02): : 307 - 312
  • [2] Classification of Wavelet Bases by Translation Subgroups and Nonharmonic Wavelet Bases
    Wang Q.
    Acta Mathematica Sinica, 2000, 16 (2) : 307 - 312
  • [3] Wavelet bases on a triangle
    Ajmi, Neyla
    Jouini, Abdellatif
    Rieusset, Pierre Gilles Lemarie
    APPLIED MATHEMATICS AND COMPUTATION, 2011, 217 (22) : 9387 - 9396
  • [4] Wavelet bases on a manifold
    Jouini, Abdellatif
    Kratou, Mouna
    JOURNAL OF FUNCTIONAL ANALYSIS, 2007, 248 (01) : 128 - 151
  • [5] On a choice of wavelet bases in the wavelet transform approach
    Guan, N
    Yashiro, K
    Ohkawa, S
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2000, 48 (08) : 1186 - 1191
  • [6] WAVELET BASES FOR THE BIHARMONIC PROBLEM
    Bimova, Daniela
    Cerna, Dana
    Finek, Vaclav
    PROGRAMS AND ALGORITHMS OF NUMERICAL MATHEMATICS 16, 2013, : 15 - 20
  • [7] Wavelet bases on adele rings
    Kosyak, A. V.
    Khrennikov, A. Yu
    Shelkovich, V. M.
    DOKLADY MATHEMATICS, 2012, 85 (01) : 75 - 79
  • [8] WAVELET BASES FOR A UNITARY OPERATOR
    LEE, SL
    TAN, HH
    TANG, WS
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 1995, 38 : 233 - 260
  • [9] On biorthogonal discrete wavelet bases
    Farkov, Yu. A.
    Rodionov, E. A.
    INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2015, 13 (01)
  • [10] Wavelet bases on adele rings
    A. V. Kosyak
    A. Yu. Khrennikov
    V. M. Shelkovich
    Doklady Mathematics, 2012, 85 : 75 - 79